Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Dairy Science 2018-Sep

Methylglyoxal: A newly detected and potentially harmful metabolite in the blood of ketotic dairy cows.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Chao Li
Shaohua Dai
Jiangyi Lu
Baoyu Zhao
Jiangang Wang
Panpan Li
Zhaozhen Wu
Yingying Mu
Cuixia Feng
Qiang Dong

Kata kunci

Abstrak

Ketosis causes serious economic losses for the modern dairy industry because it is a highly prevalent metabolic disease among cows in high-producing herds during the transition period. Due to some striking similarities between diabetes in humans and ketosis in dairy cows, there is potential for the use of methylglyoxal (MGO)-commonly used in human diabetics-as a biomarker in dairy cattle. However, currently no data are available about the presence of MGO in the serum of dairy cattle or about the characteristics of its production or its potential contribution in the pathogenesis of ketosis. To determine the potential origin and pathway of formation of MGO, cows in different metabolic conditions [i.e., non-subclinically ketotic dairy cows in early lactation (n = 7), subclinically ketotic dairy cows in early lactation (n = 8), overconditioned dry cows (BCS >4.25, n = 6), and nonlactating heifers (n = 6)] were selected. Serum MGO concentrations were determined and correlated with indicators of the glucose and lipid metabolism and with haptoglobin (Hp) as an inflammatory marker. The serum MGO concentrations in subclinically ketotic cows (712.60 ± 278.77 nmol/L) were significantly greater than in nonlactating heifers (113.35 ± 38.90 nmol/L), overconditioned dry cows (259.71 ± 117.97 nmol/L), and non-subclinically ketotic cows (347.83 ± 63.56 nmol/L). In serum of lactating cows, concentrations of glucose and fructosamine were lower than in heifers and were negatively correlated with MGO concentrations. Even so, concentrations of metabolic and inflammatory markers such as dihydroxyacetone phosphate, nonesterified fatty acids, β-hydroxybutyrate, acetone, and Hp were remarkably higher in subclinically ketotic cows compared with nonlactating heifers; these metabolites were also positively correlated with MGO. In human diabetics elevated MGO concentrations are stated to originate from both hyperglycemia and the enhanced lipid metabolism, whereas higher MGO concentrations in subclinically ketotic cows were not associated with hyperglycemia. Therefore, our data suggest MGO in dairy cows to be a metabolite produced from the metabolization of acetone within the lipid metabolization pathway and from the metabolization of dihydroxyacetone phosphate. Furthermore, the highly positive correlation between MGO and Hp suggests that this reactive compound might be involved in the proinflammatory state of subclinical ketosis in dairy cows. However, more research is needed to determine the potential use of MGO as a biomarker for metabolic failure in dairy cows.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge