Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 1995-Nov

Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
S Khan
P J O'Brien

Kata kunci

Abstrak

Hypoxia-induced hepatocyte injury results not only from ATP depletion but also from reductive stress and oxygen activation. Thus the NADH/NAD+ ratio was markedly increased in isolated hepatocytes maintained under 95% N2/5% CO2 in Krebs-Henseleit buffer well before plasma membrane disruption occurred. Glycolytic nutrients fructose, dihydroxyacetone or glyceraldehyde prevented cytotoxicity, restored the NADH/NAD+ ratio, and prevented complete ATP depletion. However, the NADH generating nutrients sorbitol, xylitol, glycerol and beta-hydroxybutyrate enhanced hypoxic cytotoxicity even though ATP depletion was not affected. On the other hand, NADH oxidising metabolic intermediates oxaloacetate or acetoacetate prevented hypoxic cytotoxicity but did not affect ATP depletion. Restoring the cellular NADH/NAD+ ratio with the artificial electron acceptors dichlorophenolindophenol and Methylene blue also prevented hypoxic injury and partly restored ATP levels. Ethanol which further increased the cellular NADH/NAD+ ratio increased by hypoxia also markedly increased toxicity whereas acetaldehyde which restored the normal cellular NADH/NAD+ ratio, prevented toxicity even though hypoxia induced ATP depletion was little affected by ethanol or acetaldehyde. The viability of hypoxic hepatocytes is therefore more dependent on the maintenance of normal redox homeostasis than ATP levels. GSH may buffer these redox changes as hypoxia caused cell injury much sooner with GSH depleted hepatocytes. Hypoxia also caused an intracellular release of free iron and cytotoxicity was prevented by desferoxamine. Furthermore, increasing the cellular NADH/NAD+ ratio markedly increased the intracellular release of iron. Hypoxia-induced hepatocyte injury was also prevented by oxypurinol, a xanthine oxidase inhibitor. Polyphenolic antioxidants or the superoxide dismutase mimic, TEMPO partly prevented cytotoxicity suggesting that reactive oxygen species contributed to the cytotoxicity. The above results suggests that hypoxia induced hepatocyte injury results from sustained reductive stress and oxygen activation.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge