Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
National Toxicology Program technical report series 1999-Jan

NTP Toxicology and Carcinogenesis Studies of Ethylbenzene (CAS No. 100-41-4) in F344/N Rats and B6C3F1 Mice (Inhalation Studies).

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
National Toxicology Program

Kata kunci

Abstrak

Ethylbenzene is mainly used in the manufacture of styrene. Ethylbenzene is also a major component of mixed xylenes used as solvents in agricultural and home insecticide sprays, rubber and chemical manufacturing, and household degreasers, paints, adhesives, and rust preventives. Ethylbenzene is also used as an antiknock agent in aviation and motor fuels. Ethylbenzene was nominated for study by the National Institute for Occupational Safety and Health (NIOSH) and the Occupational Safety and Health Administration (OSHA) because of its potential for widespread human exposure and because of its structural similarity to benzene and toluene. Male and female F344/N rats and B6C3F1 mice were exposed to ethylbenzene (greater than 99% pure) by inhalation for 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, mouse lymphoma cells, cultured Chinese hamster ovary cells, and mouse peripheral blood erythrocytes. In previously reported 13-week toxicity studies in which F344/N rats and B6C3F1 mice were exposed to ethylbenzene by whole body inhalation exposure, no histopathologic changes were observed (NTP, 1992). 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female F344/N rats were exposed to 0, 75, 250, or 750 ppm ethylbenzene by inhalation, 6 hours per day, 5 days per week, for 104 weeks. Survival, Body Weights, and Clinical Findings Survival of male rats in the 750 ppm group was significantly less than that of the chamber controls. Mean body weights of 250 and 750 ppm males were generally less than those of the chamber controls beginning at week 20. Mean body weights of exposed groups of females were generally less than those of chamber controls during the second year of the study. Pathology Findings In male rats exposed to 750 ppm, the incidences of renal tubule adenoma and adenoma or carcinoma (combined) were significantly greater than the chamber control incidences. In addition, the incidence of renal tubule hyperplasia in 750 ppm males was significantly greater than that in the chamber controls. The findings from an extended evaluation (step section) of the kidneys showed a significant increase in the incidences of renal tubule adenoma and hyperplasia in 750 ppm males and females; the incidence of renal tubule adenoma or carcinoma (combined) was significantly increased in 750 ppm males. The severities of nephropathy in 750 ppm male and all exposed female rats were significantly increased relative to the chamber controls. The incidence of interstitial cell adenoma in the testis of 750 ppm males was significantly greater than that in the chamber control group and slightly exceeded the historical control range for inhalation studies. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female B6C3F1 mice were exposed to 0, 75, 250, or 750 ppm ethylbenzene by inhalation, 6 hours per day, 5 days per week, for 103 weeks. Survival, Body Weights, and Clinical Findings Survival of exposed groups of male and female mice was similar to that of the chamber controls. Mean body weights of female mice exposed to 75 ppm were greater than those of the chamber controls from week 72 until the end of the study. Pathology Findings In 750 ppm males, the incidences of alveolar/ bronchiolar adenoma and alveolar/bronchiolar adenoma or carcinoma (combined) were significantly greater than those in the chamber control group but were within the NTP historical control ranges. The incidence of alveolar epithelial metaplasia in 750 ppm males was significantly greater than that in the chamber controls. In 750 ppm females, the incidences of hepatocellular adenoma and hepatocellular adenoma or carcinoma (combined) were significantly greater than those in the chamber control group but were within the historical control ranges. The incidence of eosinophilic foci in 750 ppm females was significantly increased compared to that in the chamber controls. There was a spectrum of nonneoplastic liver changes related to ethylbenzene exposure in male mice, including syncytial alteration of hepatocytes, hepatocellular hypertrophy, and hepatocyte necrosis. rosis. The incidences of hyperplasia of the pituitary gland pars distalis in 250 and 750 ppm females and the incidences of thyroid gland follicular cell hyperplasia in 750 ppm males and females were significantly increased compared to those in the chamber control groups. GENETIC TOXICOLOGY: Ethylbenzene gave little indication of mutagenicity, in vitro or in vivo. No induction of mutations was noted in Salmonella typhimurium strain TA97, TA98, TA100, or TA1535 with or without S9 metabolic activation, and no increases in sister chromatid exchanges or chromosomal aberrations were observed in cultured Chinese hamster ovary cells treated with ethylbenzene, with or without S9. In the mouse lymphoma assay, a significant mutagenic response was noted in the absence of S9, but only at the highest nonlethal dose tested and with accompanying cytotoxicity; the test was not performed with S9. No increases in the frequency of micronucleated erythrocytes were observed in vivo in peripheral blood samples from male and female mice exposed to ethylbenzene for 13 weeks. CONCLUSIONS: Under the conditions of these 2-year inhalation studies, there was clear evidence of carcinogenic activity of ethylbenzene in male F344/N rats based on increased incidences of renal tubule neoplasms. The incidences of testicular adenoma were also increased. There was some evidence of carcinogenic activity of ethylbenzene in female F344/N rats based on increased incidences of renal tubule adenomas. There was some evidence of carcinogenic activity of ethylbenzene in male B6C3F1 mice based on increased incidences of alveolar/bronchiolar neoplasms. There was some evidence of carcinogenic activity of ethylbenzene in female B6C3F1 mice based on increased incidences of hepatocellular neoplasms. Exposure of male and female rats to ethylbenzene resulted in increased incidences of renal tubule hyperplasia and increased severities of nephropathy. Exposure of male mice to ethylbenzene resulted in increased incidences of alveolar epithelial metaplasia, syncytial alteration of hepatocytes, hepatocellular hypertrophy, hepatocyte necrosis, and thyroid gland follicular cell hyperplasia. In female mice, ethylbenzene exposure resulted in increased incidences of eosinophilic foci of the liver, pituitary gland pars distalis hyperplasia, and thyroid gland follicular cell hyperplasia. Synonyms: EB; ethylbenzol; phenylethane

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge