Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
CNS & neurological disorders drug targets 2012-Feb

Nanowired drug delivery of antioxidant compound H-290/51 enhances neuroprotection in hyperthermia-induced neurotoxicity.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Dafin F Muresanu
Aruna Sharma
Z Ryan Tian
Mark A Smith
Hari Shanker Sharma

Kata kunci

Abstrak

Nanoparticles from the environment or through industrial sources can induce profound alterations in human health, often leading to brain dysfunction. However, it is still unclear whether nanoparticle intoxication could also alter the physiological or pathological responses of additional brain injury, stress response or disease processes. Military personals engaged in combat or peacekeeping operations are often exposed to nanoparticles from various environmental sources, e.g., Ag, Cu, Si, C, Al. In addition, these military personals are often exposed to high environmental heat, or gun and missle explosion injury leading to head or spinal trauma. Thus it is likely that additional CNS injury or stress-induced pathophysiological processes are influenced by nanoparticle intoxication. In this situation, when a combination of nanoparticles and central nervous system (CNS) injury or stress exist together, drug therapy needed to correct these anomalies may not work as effectively as in normal situation. Previous studies from our laboratory show that nanoparticle-intoxicated animals when subjected to hyperthermia resulted in exacerbation of brain pathology. In these animals, antioxidant compounds, e.g., H-290/51 that inhibits free radical formation and induces marked neuroprotection in normal rats after heat stress, failed to protect brain damage when a combination of nanoparticles and heat exposure was used. However, nanowired H-290/51 resulted in better neuroprotection in nanoparticles intoxicated animals after heat stress. Interestingly, high doses of the normal compound induced some neuroprotection in these nanoparticle-treated, heat-stressed rats. These observations suggest that a combination of nanoparticles and heat stress is dangerous and in such situations modification of drug dosage is needed to achieve comparable neuroprotection. In this review possible mechanisms of nanoparticle-induced exacerbation of heat induced neurotoxicity and brain protection achieved by nanowired drug delivery is discussed that is largely based on our own investigations.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge