Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials Science and Engineering C 2019-Jan

Novel of nano delivery system for Linalool loaded on gold nanoparticles conjugated with CALNN peptide for application in drug uptake and induction of cell death on breast cancer cell line.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Majid S Jabir
Ali A Taha
Usama I Sahib
Zainab J Taqi
Ahmed M Al-Shammari
Alya S Salman

Kata kunci

Abstrak

Linalool is a monoterpene alcohol which occurs naturally in several aromatic plants. The aims of this study are to load Linalool on gold nanoparticles, conjugate the complex with CALNN peptide, and investigate them for in-vitro anticancer activities against breast cancer (MCF-7) cell line. Linalool was obtained with 98% purity while gold nanoparticles and CALNN peptide were chemically synthesized. The formation of LIN-GNPs and LIN-GNPs-CALNN was observed through a color change. These compounds were confirmed and characterized using SEM, DLS, AFM, UV-VIS spectrophotometer, XRD, and FTIR. The free radical scavenging potential of each compound was confirmed based on its stable antioxidant effects using different parameters. Blood compatibility on red blood cells was confirmed by hemolytic and in vitro cytotoxicity assays. The in-vitro anticancer activity of each compound towardMCF-7 cell line was investigated using various parameters. From the results, Linalool, GNPs, LIN-GNPs, and LIN-GNPs-CALNN were found to exert cell growth arrest against MCF-7 cell line. The anti-proliferative effect of these compounds was due to cell death and induction of apoptosis confirmed using acridine orange-Ethidium bromide dual staining, DAPI staining, and electrophoresis analysis of DNA fragmentation. High fluorescent signals specific for the cellular uptake of LIN-GNPs and LIN-GNPs-CALNN into the cytoplasm of the cell line were confirmed. To study the toxicity of LIN-GNPs-CALNN in animal models, the hematological, histopathological, and body weight changes were estimated after 4 weeks of intraperitoneal injection of the compounds into the animal models. Our results demonstrate that Linalool, GNPs, Linalool-GNPs, and Linalool-GNPs-CALNN peptide had no side effects and could be clinically used for future therapeutic purposes.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge