Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drug Metabolism and Disposition

Oxidative cleavage of the pentyl side-chain of cannabinoids. Identification of new biotransformation pathways in the metabolism of 4'-hydroxy-delta-9-tetrahydrocannabinol in the mouse.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
D J Harvey

Kata kunci

Abstrak

During an investigation of the mechanisms leading to the formation of metabolites of cannabinoids in which the pentyl side chain is reduced to 2, 3 or 4 carbon atoms, the further metabolism of 4'-hydroxy-delta 9-tetrahydrocannabinol was investigated in vivo in mice. Metabolites were extracted with ethyl acetate, concentrated by chromatography on Sephadex LH-20 and identified by GC/MS. Ten metabolites were identified and a further two had tentative structural assignments made. The major metabolic route, in common with that seen with most cannabinoids, was hydroxylation at the allylic 11-position, followed by oxidation to a carboxylic acid. Additional hydroxylation occurred at C-8. Abundant metabolites were also formed by oxidative cleavage of the pentyl side chain. The major metabolites of this type had lost the terminal two carbon atoms to give compounds containing a carboxyethyl side chain. This is the major product normally produced by beta-oxidation of the acid formed from 5'-hydroxy-delta 9-tetrahydrocannabinol. Trace concentrations of two other acids that appeared to have a carboxypropyl side chain were also found. The results show that, in addition to beta-oxidation, initiated by hydroxylation at the 5'-carbon atom (omega-hydroxylation), at least one other oxidative route, initiated by omega-1-hydroxylation, is involved in the production of metabolites with two carbon atoms missing from the pentyl side chain. This pathway does not seem to have been characterized as a biotransformation mechanism in drug metabolism and a possible mechanism is suggested.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge