Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1998-Jun

Pharmacological characterization of swelling-induced D-[3H]aspartate release from primary astrocyte cultures.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
E M Rutledge
M Aschner
H K Kimelberg

Kata kunci

Abstrak

During stroke or head trauma, extracellular K+ concentration increases, which can cause astrocytes to swell. In vitro, such swelling causes astrocytes to release excitatory amino acids, which may contribute to excitotoxicity in vivo. Several putative swelling-activated channels have been identified through which such anionic organic cellular osmolytes can be released. In the present study, we sought to identify the swelling-activated channel(s) responsible for D-[3H]aspartate release from primary cultured astrocytes exposed to either KCl or hypotonic medium. KCl-induced D-[3H]aspartate release was inhibited by the anion channel inhibitors 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), dideoxyforskolin, L-644711, ATP, ITP, 3'-azido-3'-deoxythymidine, DIDS, and tamoxifen but not by cAMP. The cell swelling caused by raised KCl was not inhibited by extracellular ATP or tamoxifen as measured by an electrical impedance method, which suggests that these anion channel inhibitors directly blocked the channel responsible for efflux. Extracellular nucleotides and DIDS, however, had no or only partial effects on D-[3H]aspartate release from cells swollen by hypotonic medium, but such release was inhibited by NPPB, dideoxyforskolin, and tamoxifen. Of the swelling-activated channels so far identified, our data suggest that a volume-sensitive outwardly rectifying channel is responsible for D-[3H]aspartate release from primary cultured astrocytes during raised extracellular K+ and possibly during hypotonic medium-induced release.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge