Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Drug Metabolism 2007-Apr

Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
W Todd Penberthy

Kata kunci

Abstrak

Cells at the maternal-fetal interface express indoleamine 2,3 dioxygenase (IDO) to consume all local tryptophan for the express purpose of starving adjacent maternal T cells of this most limiting and essential amino acid. This stops local T cell proliferation to ultimately result in the most dramatic example of immune tolerance, acceptance of the fetus. By contrast, inhibition of IDO using 1-methyl-tryptophan causes a sudden catastrophic rejection of the mammalian fetus. Immunomodulatory factors including IFNgamma, TNFalpha, IL-1, and LPS use IDO induction in responsive antigen presenting cells (APCs) also to transmit tolerogenic signals to T cells. Thus it makes sense to consider IDO induction towards tolerance for autoimmune diseases in general. Approaches to cell specific therapeutic IDO induction with NAD precursor supplementation to prevent the collateral non-T cell pathogenesis due to chronic TNFalpha-IDO activated tryptophan depletion in autoimmune diseases are reviewed. Tryptophan is an essential amino acid most immediately because it is the only precursor for the endogenous biosynthesis of nicotinamide adenine dinucleotide (NAD). Both autoimmune disease and the NAD deficiency disease pellagra occur in women at greater than twice the frequency of occurrence in men. The importance of IDO dysregulation manifest as autoimmune pellagric dementia is genetically illustrated for Nasu-Hakola Disease (or PLOSL), which is caused by a mutation in the IDO antagonizing genes TYROBP/DAP12 or TREM2. Loss of function leads to psychotic symptoms rapidly progressing to presenile dementia likely due to unchecked increases in microglial IDO expression, which depletes neurons of tryptophan causing neurodegeneration. Administration of NAD precursors rescued entire mental hospitals of dementia patients literally overnight in the 1930's and NAD precursors should help Nasu-Hakola patients as well. NAD depletion mediated by peroxynitrate PARP1 activation is one of the few established mechanisms of necrosis. Chronic elevation of TNFalpha leading to necrotic events by NAD depletion in autoimmune disease likely occurs via combination of persistent IDO activation and iNOS-peroxynitrate activation of PARP1 both of which deplete NAD. Pharmacological doses of NAD precursors repeatedly provide dramatic therapeutic benefit for rheumatoid arthritis, type 1 diabetes, multiple sclerosis, colitis, other autoimmune diseases, and schizophrenia in either the clinic or animal models. Collectively these observations support the idea that autoimmune disease may in part be considered as localized pellagra manifesting symptoms particular to the inflamed target tissues. Thus pharmacological doses of NAD precursors (nicotinic acid/niacin, nicotinamide/niacinamide, or nicotinamide riboside) should be considered as potentially essential to the therapeutic success of any IDO-inducing regimen for treating autoimmune diseases. Distinct among the NAD precursors, nicotinic acid specifically activates the g-protein coupled receptor (GPCR) GPR109a to produce the IDO-inducing tolerogenic prostaglandins PGE(2) and PGD(2). Next, PGD(2) is converted to the anti-inflammatory prostaglandin, 15d-PGJ(2). These prostaglandins exert potent anti-inflammatory activities through endogenous signaling mechanisms involving the GPCRs EP2, EP4, and DP1 along with PPARgamma respectively. Nicotinamide prevents type 1 diabetes and ameliorates multiple sclerosis in animal models, while nothing is known about the therapeutic potential of nicotinamide riboside. Alternatively the direct targeting of the non-redox NAD-dependent proteins using resveratrol to activate SIRT1 or PJ34 in order to inhibit PARP1 and prevent autoimmune pathogenesis are also given consideration.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge