Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant and Cell Physiology 2007-Jun

Potential role of annexin AnnAt1 from Arabidopsis thaliana in pH-mediated cellular response to environmental stimuli.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Karolina M Gorecka
Cyril Thouverey
Rene Buchet
Slawomir Pikula

Kata kunci

Abstrak

Plant annexins, Ca(2+)- and membrane-binding proteins, are probably implicated in the cellular response to stress resulting from acidification of cytosol. To understand how annexins can contribute to cellular ion homeostasis, we investigated the pH-induced changes in the structure and function of recombinant annexin AnnAt1 from Arabidopsis thaliana. The decrease of pH from 7.0 to 5.8 reduced the time of the formation of ion channels by AnnAt1 in artificial lipid membranes from 3.5 h to 15-20 min and increased their unitary conductance from 32 to 63 pS. These changes were accompanied by an increase in AnnAt1 hydrophobicity as revealed by hydrophobicity predictions, by an increase in fluorescence of 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS) bound to AnnAt1 and fluorescence resonance energy transfer from AnnAt1 tryptophan residues to TNS. Concomitant lipid partition of AnnAt1 at acidic pH resulted in its partial protection from proteolytic digestion. Secondary structures of AnnAt1 determined by circular dichroism and infrared spectroscopy were also affected by lowering the pH from 7.2 to 5.2. These changes were characterized by an increase in beta-sheet content at the expense of alpha-helical structures, and were accompanied by reversible formation of AnnAt1 oligomers as probed by ultracentrifugation in a sucrose gradient. A further decrease of pH from 5.2 to 4.5 or lower led to the formation of irreversible aggregates and loss of AnnAt1 ionic conductance. Our findings suggest that AnnAt1 can sense changes of the pH milieu over the pH range from 7 to 5 and respond by changes in ion channel conductance, hydrophobicity, secondary structure of the protein and formation of oligomers. Further acidification irreversibly inactivated AnnAt1. We suggest that the pH-sensitive ion channel activity of AnnAt1 may play a role in intracellular ion homeostasis.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge