Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 2011-Apr

Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Umberto Zottich
Maura Da Cunha
André O Carvalho
Germana B Dias
Nádia C M Silva
Izabela S Santos
Viviane V do Nacimento
Emílio C Miguel
Olga L T Machado
Valdirene M Gomes

Kata kunci

Abstrak

BACKGROUND

A growing number of cysteine-rich antimicrobial peptides (AMPs) have been isolated from plants and particularly from seeds. It has become increasingly clear that these peptides, which include lipid transfer proteins (LTPs), play an important role in the protection of plants against microbial infection.

METHODS

Peptides from Coffea canephora seeds were extracted in Tris-HCl buffer (pH 8.0), and chromatographic purification of LTP was performed by DEAE and reverse-phase HPLC. The purified peptide was submitted to amino acid sequence, antimicrobial activity and mammalian α-amylase inhibitory analyses.

RESULTS

The purified peptide of 9kDa had homology to LTPs isolated from different plants. Bidimensional electrophoresis of the 9kDa band showed the presence of two isoforms with pIs of 8.0 and 8.5. Cc-LTP(1) exhibited strong antifungal activity, against Candida albicans, and also promoted morphological changes including the formation of pseudohyphae on Candida tropicalis, as revealed by electron micrograph. Our results show that Cc-LTP(1) interfered in a dose-dependent manner with glucose-stimulated, H(+)-ATPase-dependent acidification of yeast medium and that the peptide permeabilized yeast plasma membranes to the dye SYTOX green, as verified by fluorescence microscopy. Interestingly, we also showed for the first time that the well characterized LTP(1) family, represented here by Cc-LTP(1), was also able to inhibit mammalian α-amylase activity in vitro.

CONCLUSIONS

In this work we purified, characterized and evaluated the in vitro effect on yeast of a new peptide from coffee, named Cc-LPT1, which we also showed, for the first time, the ability to inhibit mammalian α-amylase activity.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge