Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology and Bioengineering 1997-Dec

Relevance of rheological properties of gel beads for their mechanical stability in bioreactors.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
V A Martins Dos Santos
E J Leenen
M M Rippoll
C van der Sluis
T van Vliet
J Tramper
R H Wijffels

Kata kunci

Abstrak

The mechanical stability of biocatalyst particles in bioreactors is of crucial importance for applications of immobilized-cell technology in bioconversions. The common methods for evaluation of the strength of polymer beads (mostly force-to-fracture or tensile tests) are, however, not yet proven to be relevant for the assessment of their mechanical stability in bioreactors. Therefore, we tested fracture properties of gel materials and investigated their relevance for abrasion in bioreactors. Abrasion of gel beads was assumed to be a continuous fracturing of the bead surface. At first, three rheological properties were considered: stress at fracture; strain at fracture; and the total fracture energy. If stress at fracture is the most important property, beads having a similar fracture energy, but a smaller stress at fracture, would abrade faster in a bioreactor than beads with a larger stress at fracture; if fracture energy the determining factor, beads that require less energy to fracture would abrade faster than those having a larger fracture energy for the same fracture stress. To determine this, beads of kappa-carrageenan and agar (at two different polymer concentrations) were tested for abrasion in four identical bubble columns under the same operating conditions. Agar beads were expected to abrade faster than those of carrageenan because agar had either a lower stress at fracture or a lower fracture energy. However, no correlation between fracture properties and abrasion rate was found in any of the combinations tested. Carrageenan beads abraded faster than those of agar in all combinations. Furthermore, both the stress and strain at fracture of agar and carrageenan beads decreased during the run and those of carrageenan decreased faster, suggesting that the gels are liable to fatigue in different ways. This hypothesis was confirmed by oscillating experiments in which gel samples were subjected to repeated compressions below their fracture levels. Their resistance to compression clearly decreased with the number of oscillations. Fatigue is probably related to the development of microcracks and microfracture propagation within the material. We concluded that: (a) the use of tests based on bead rupture do not provide relevant information on the mechanical stability of gel beads to abrasion; and (b) abrasion of polymer beads is likely to be related to fatigue of the gel materials. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 517-529, 1997.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge