Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 2005-May

Residue 234 in glutathione transferase T1-1 plays a pivotal role in the catalytic activity and the selectivity against alternative substrates.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Abeer Shokeer
Anna-Karin Larsson
Bengt Mannervik

Kata kunci

Abstrak

GST (glutathione transferase) T1-1 plays an important role in the biotransformation of halogenated alkanes, which are used in large quantities as solvents and occur as environmental pollutants. Many reactions that are catalysed by GST T1-1 qualify as detoxification processes, but some reactions with dihalogenated alkanes lead to reactive products more toxic than the substrates. Murine GST T1-1 is particularly active with dichloromethane, which may explain the high carcinogenicity of dichloromethane in the mouse. Human GST T1-1 activity is considerably lower with halogenated hydrocarbons and some related substrates. Human GST T1-1 is polymorphic with a frequent null phenotype, suggesting that it is advantageous, under some circumstances, to lack the functional enzyme, which catalyses GSH conjugations that may cause bioactivation. The present study shows that amino acid residue 234 is a determinant of the differences in catalytic efficiency between the human and the rodent enzymes. The replacement of Trp234 in human GST T1-1 by arginine, found in the rodent enzyme, enhanced the alkyltransferase activity by an order of magnitude with a series of homologous iodoalkanes and some typical GST substrates. The specific activity of the alternative mutant Trp234-->Lys was lower than for the parental human GST T1-1 with many substrates, showing that a positive charge is not sufficient for increased activity. The enhanced activity of Trp234-->Arg with alkylating agents was dependent on the substrate tested, whereas no increase of the peroxidase activity with cumene hydroperoxide was noted. Residue 234 therefore is also involved in the control of the substrate selectivity of GST T1-1.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge