Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Neurovascular Research 2005-Jul

Role of kynurenines in the central and peripheral nervous systems.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Hajnalka Németh
József Toldi
László Vécsei

Kata kunci

Abstrak

Kynurenine (KYN) is an intermediate in the pathway of the metabolism of tryptophan to nicotinic acid. KYN is formed in the mammalian brain (40%) and is taken up from the periphery (60%), indicating that it can be transported across the blood-brain barrier (BBB). In the brain, KYN can be converted to two other components of the pathway: the neurotoxic quinolinic acid (QUIN) and the neuroprotective kynurenic acid (KYNA). QUIN is probably the most widely studied metabolite of KYN, because it may cause excitotoxic neuronal cell loss and convulsions by interacting with the N-methyl-D-aspartate (NMDA) receptor complex, a type of glutamate receptor. KYNA is another metabolite of KYN; its synthesis is catalysed by KYN aminotransferases. This is the only known endogenous NMDA receptor inhibitor, which can act at the glycine site on the receptor complex. Furthermore, KYNA non-competitively inhibits alpha7 nicotinic acetylcholine presynaptic receptors (nAChRs), inhibiting glutamate release, and regulates the expression of alpha4beta2 nAChR. It is well-known that the activation of excitatory amino acid (EAA) receptors can play a role in a number of neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, stroke and epilepsy. Various studies have been made of whether the EAA receptor antagonist KYNA can exert a therapeutic effect in these neurological disorders. It has been established that KYNA has only a very limited ability to cross the BBB. Other KYNA derivatives have been synthesised (e.g. glucosamine-KYNA, 4-chloro-KYNA and 7-chloro-KYNA), which are well transported across the BBB and act on the glutamate receptors. Moreover, it has been demonstrated that probenecid, a known inhibitor of the transport of organic acids (e.g. KYNA), increases the cerebral concentration of KYNA. There is another new perspective to the maintenance of a high level of KYNA in the brain: the use of enzyme inhibitors, which can block the synthesis of the neurotoxic QUIN. These are some of the most promising possibilities as novel therapeutic strategies for the treatment of neurodegenerative diseases, in which the hyperactivation of amino acid receptors could be involved. The presence and importance of KYN derivatives in the periphery are also discussed in the light of recent publications.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge