Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2002-Feb

Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Vadim Demidchik
Mark Tester

Kata kunci

Abstrak

The aim of the present work was to characterize Na(+) currents through nonselective cation channels (NSCCs) in protoplasts derived from root cells of Arabidopsis. The procedure of the protoplast isolation was modified to increase the stability of Arabidopsis root protoplasts in low external Ca(2+) by digesting tissue in elevated Ca(2+). Experiments in whole-cell and outside-out modes were carried out. We found that Na(+) currents in Arabidopsis root protoplasts were mediated by cation channels that were insensitive to externally applied tetraethylammonium(+) and verapamil, had no time-dependent activation (permanently opened or completely activated within 1-2 ms), were voltage independent, and were weakly selective for monovalent cations. The selectivity sequence was as follows: K(+) (1.49) > NH(4)(+) (1.24) > Rb(+) (1.15) approximately equal to Cs(+) (1.10) approximately equal to Na(+) (1.00) > Li(+) (0.73) > tetraethylammonium(+) (0.47). Arabidopsis root NSCCs were blocked by H(+) (pK approximately equal to 6.0), Ca(2+) (K(1/2) approximately equal to 0.1 mM), Ba(2+), Zn(2+), La(3+), Gd(3+), quinine, and the His modifier diethylpyrocarbonate. They were insensitive to most organic blockers (nifedipine, verapamil, flufenamate, and amiloride) and to the SH-group modifier p-chloromercuriphenyl sulfonic acid. Voltage-insensitive, Ca(2+)-sensitive single channels were also resolved. Properties of Arabidopsis root NSCCs are discussed and compared with characteristics of similar conductances studied previously in plants and animals. It is suggested that NSCCs present a distinct group of plant ion channels, mediating toxic Na(+) influx to the cell and probably having other important roles in physiological processes of plants.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge