Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Science 2018-May

Sugar metabolism in the desiccation tolerant grass Oropetium thomaeum in response to environmental stresses.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Qingwei Zhang
Xiaomin Song
Dorothea Bartels

Kata kunci

Abstrak

Oropetium thomaeum is a desiccation tolerant grass and acquisition of desiccation tolerance is correlated with changes in carbohydrate metabolism. Here we address the question whether the changes in carbohydrate metabolism are specific to the dehydration process or whether other environmental factors such as high temperature, low temperature, hypoxia, salinity or exogenous ABA application trigger the same or different changes in the sugar metabolism. Fifteen different sugar metabolites were identified by GC/MS, including erythritol, arabinose, fructose, galactose, glucose, myo-inositol, sedoheptulose, sucrose, trehalose, galactinol, maltose, raffinose, manninotriose and stachyose. Together with starch, these sugars were placed into the pathways of sucrose metabolism and raffinose family oligosaccharides (RFOs) metabolism, as well as into the group of rare sugars. By comparing the changes of sugars under various stresses, we concluded that the changes in the sugar metabolism are both convergent and divergent in response to different stresses. Except for the general response to stress, such as starch degradation, the changes of specific sugar metabolites reflect a stress-specific response of O. thomaeum. Erythritol seems to be specific for dehydration, myo-inositol for salt stress and trehalose for hypoxia stress. Similar as dehydration, low temperature, salt stress and ABA application resulted in the accumulation of sucrose and RFOs in O. thomaeum, which indicates that these stresses share high similarity with dehydration. Thus it is proposed that sucrose and RFOs have a general protective role under these stresses. In contrast sucrose and RFOs did not accumulate in response to high temperature or hypoxia whose effects tend to be consumptive and destructive. The accumulation of galactose, melibiose and manninotriose demonstrate that RFOs are degraded under stress. The accumulation of these sugar metabolites might result from the reaction of RFOs and stress-produced hydroxyl radicals, which supports a possible role of RFOs in stress defense. In addition, ABA application led to substantial synthesis of stachyose which occurs only in response to dehydration, indicating that stachyose synthesis is possibly closely related to ABA in O. thomaeum.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge