Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological and Pharmaceutical Bulletin 2019

The Reparative Effect of Dendrobium officinale Protocorms against Photodamage Caused by UV-Irradiation in Hairless Mice.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Yansui Mai
Zheng Niu
Wenda He
Xiaoping Lai
Song Huang
Xiasheng Zheng

Kata kunci

Abstrak

Dendrobium officinale protocorms (DOPs) are a specific developmental stage of Dendrobium officinale KIMURA et MIGO, which is used in folk medicine to ease skin issues, such as wrinkles and erythema. The purpose of the current study was to evaluate the effect of DOPs on UV irradiation-induced skin damage in bc_nu hairless mice, using matrixyl as a positive control. Hairless mice were randomly separated into 6 groups (8 mice per group). The normal control group received solvent and was not exposed to UV irradiation, while the model control group received solvent and was exposed to UV irradiation. The positive control group was subjected to UV irradiation and then received a 10 mg/mL formulation of matrixyl. The DOPs-treated groups received a transdermal application of a DOPs formulation after 4 weeks of UV irradiation. Relevant indicators, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), thiobarbituric acid reactive substances (TBARS) and matrix metalloproteinases (MMPs), were then used to evaluate the ability of DOPs to repair photodamage. The results indicated that DOPs significantly reduced erythema and protected the skin from dryness and therefore exhibits a significant anti-photoaging effect. In addition, the expression of CAT, SOD, and GSH-Px increased while TBARS and MMPs levels decreased in DOPs-treated mice. This demonstrated that DOPs can inhibit photodamage in the skin of hairless mice. DOPs could be used as a potential therapeutic agent to protect the skin against UV-induced photoaging.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge