Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Lipids 1996-Oct

The effects of lidocaine and hypoxia on phospholipid biosynthesis in the isolated hamster heart.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
J T Wong
R Y Man
P C Choy

Kata kunci

Abstrak

In this study, the effects of lidocaine and hypoxia on the biosynthesis of phospholipids in the hamster heart were examined. Hamster hearts were perfused with [1,3-3H]glycerol under normal and hypoxic conditions, and in the absence or presence of 0.5 mg/mL lidocaine. After perfusion, the radioactivity incorporated into the various phospholipid fractions was determined. With the exception of phosphatidylcholine, the synthesis of phospholipids was generally stimulated by lidocaine perfusion. In contrast, hypoxia caused a general decrease in phospholipid biosynthesis which was partially restored by lidocaine. ATP and CTP levels were severely reduced under hypoxic conditions, but their levels were not restored by lidocaine treatment. The activities of enzymes for phospholipid synthesis were determined under the various perfusion conditions. The activity of phosphatidic acid phosphatase was elevated by lidocaine and decreased by hypoxic treatment. The activity of CTP:phosphatidic acid cytidylyltransferase was increased under hypoxia, with or without lidocaine. Despite the reduction in phosphatidylcholine biosynthesis, no change in the activity of cytidine diphosphocholine (CDPcholine):diacylglycerol cholinephosphotransferase was detected following lidocaine or hypoxic perfusion. However, enzyme activity was inhibited by the presence of lidocaine in the assay mixture. Our results indicate that the reduction in phospholipid biosynthesis under hypoxic conditions was caused mainly by diminishing high-energy nucleotide levels. The enhancement of phospholipid biosynthesis by lidocaine appeared to be mediated in part by modulation of enzyme activities.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge