Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological Trace Element Research 2013-Sep

Tissue aluminum concentration does not affect the genomic stability of ERBB2, C-MYC, and CCND1 genes in breast cancer.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Raquel Mary Rodrigues-Peres
Solange Cadore
Stefanny Febraio
Juliana Karina Heinrich
Katia Piton Serra
Sophie F M Derchain
José Vassallo
Luis Otavio Sarian

Kata kunci

Abstrak

It has long been hypothesized that body tissue uptake of aluminum may have biological implications in breast cancer. In vitro and in vivo studies have shown that aluminum may trigger genomic instability by interfering with DNA strands. The objective of this study was to examine the relationship between aluminum concentrations in the peripheral and central areas of breast tumors with the instability of three key genes in breast cancer, ERBB2, C-MYC, and CCND1 and aneuploidy of the chromosomes harboring these genes. Tissue samples of 118 women treated for breast cancer were obtained. Evaluation of aluminum content was carried out using graphite furnace atomic absorption spectrometry. A tissue microarray slide containing the tumor samples was used in FISH assays to assess ERBB2, C-MYC, and CCND1 expressions as well as the statuses of their respective chromosomes 17, 8, and 11. Clinicopathological data were obtained from patient's records. Aluminum levels of >2.0 mg/kg were found in 20.3 and 22.1% of the central and peripheral breast tumor areas, respectively. Amplification and/or aneuploid-positive statuses for ERBB2/CEP17, C-MYC/CEP8, and CCND1/CEP11 were detected in 24, 36.7, and 29.3% of the tumors, respectively. We found that aluminum concentration was not related to these altered gene statuses. Our findings suggest that aluminum concentration does not affect genomic stability in breast tissues. Tissue microenvironment modifications, due to the presence of aluminum compounds, seem more appealing as a possible target for future studies to determine the implications of aluminum in breast carcinogenesis.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge