Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2009-May

Transcriptional profiling in response to inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Isabelle Duval
Nathalie Beaudoin

Kata kunci

Abstrak

The plant cell wall determines cell shape and is the main barrier against environmental challenges. Perturbations in the cellulose content of the wall lead to global modifications in cellular homeostasis, as seen in cellulose synthase mutants or after inhibiting cellulose synthesis. In particular, application of inhibitors of cellulose synthesis such as thaxtomin A (TA) and isoxaben (IXB) initiates a programmed cell death (PCD) in Arabidopsis thaliana suspension cells that is dependent on de novo gene transcription. To further understand how TA and IXB activate PCD, a whole genome microarray analysis was performed on mRNA isolated from Arabidopsis suspension cells exposed to TA and IXB. More than 75% of the genes upregulated by TA were also upregulated by IXB, including genes encoding cell wall-related and calcium-binding proteins, defence/stress-related transcription factors, signalling components and cell death-related proteins. Comparisons with published transcriptional analyses revealed that half of these genes were also induced by ozone, wounding, bacterial elicitor, Yariv reagent, chitin and H(2)O(2). These data indicate that both IXB and TA activate a similar gene expression profile, which includes an important subset of genes generally induced in response to various biotic and abiotic stress. However, genes typically activated during the defence response mediated by classical salicylic acid, jasmonate or ethylene signalling pathways were not upregulated in response to TA and IXB. These results suggest that inhibition of cellulose synthesis induces PCD by the activation of common stress-related pathways that would somehow bypass the classical hormone-dependent defence pathways.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge