Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biotechnology 2015-Mar

Transcriptomic changes during tuber dormancy release process revealed by RNA sequencing in potato.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Bailin Liu
Ning Zhang
Yikai Wen
Xin Jin
Jiangwei Yang
Huaijun Si
Di Wang

Kata kunci

Abstrak

Potato tuber dormancy release is a critical development process that allows potato to produce new plant. The first Illumina RNA sequencing to generate the expressed mRNAs at dormancy tuber (DT), dormancy release tuber (DRT) and sprouting tuber (ST) was performed. We identified 26,639 genes including 5,912 (3,450 up-regulated while 2,462 down-regulated) and 3,885 (2,141 up-regulated while 1,744 down-regulated) genes were differentially expressed from DT vs DRT and DRT vs ST. The RNA-Seq results were further verified using qRT-PCR. We found reserve mobilization events were activated before the bud emergence (DT vs DRT) and highlighted after dormancy release (DRT vs ST). Overexpressed genes related to metabolism of auxin, gibberellic acid, cytokinin and barssinosteriod were dominated in DT vs DRT, whereas overexpressed genes involved in metabolism of ethylene, jasmonate and salicylate were prominent in DRT vs ST. Various histone and cyclin isoforms associated genes involved in cell division/cycle were mainly up-regulated in DT vs DRT. Dormancy release process was also companied by stress response and redox regulation, those genes related to biotic stress, cell wall and second metabolism was preferentially overexpressed in DRT vs ST, which might accelerate dormancy breaking and sprout outgrowth. The metabolic processes activated during tuber dormancy release were also supported by plant seed models. These results represented the first comprehensive picture of a large number of genes involved in tuber dormancy release process.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge