Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Dental Materials 1998-Nov

Vapor emissions resulting from Nd:YAG laser interaction with tooth structure.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
S C Gelskey
J M White
D E Gelskey
W Kremers

Kata kunci

Abstrak

The Neodymium:yttrium aluminum garnet (Nd:YAG) dental laser has been cleared by the United States Food and Drug Administration (FDA) for marketing in intraoral soft tissue treatment. The efficacy and safety of the Nd:YAG laser in the treatment of hard dental tissue as well as the effects of dental irradiation on the pulp and periodontium have been investigated. Odors resulting from laser irradiation have been reported, but the nature and toxicity of associated decomposition vapors is unknown and the health consequences of their inhalation have not yet been studied.

OBJECTIVE

The purpose of this in vitro study was to identify vapors emitted during interaction of the Nd:YAG laser with carious human enamel and dentin and sound enamel and dentin coated with organic ink.

METHODS

Vapor emissions were collected from prepared sections of extracted human teeth receiving laser irradiation of 100 mJ and 10 Hz for a duration of 1, 10, or 60 s. Emissions were collected by means of charcoal absorption tubes, and subsequently analyzed using a Gas Chromatograph equipped with Mass Selective (GC/MS) and Flame Ionization Detectors to identify the chemical constituents of the vapors.

RESULTS

No compounds were identified in Nd:YAG laser-treated caries, enamel and dentin. No volatile vapors were identified from samples of tooth materials exposed to the laser for 1 or 10 s. Camphor was positively identified in the test sample which consisted of India ink-coated dentin and the reference sample of India ink-coated glass beads, both exposed to the laser for 60 s. 2,5-norbornadiene was tentatively identified in these samples. The Threshold Limit Value (TLV) of camphor is 2 ppm with a Lethal Dose Level (LDLo) of 50 mg/kg (human oral), while the TLV and LDLo of 2,5-norbornadiene is unknown.

CONCLUSIONS

Occupational and public health safety measures are discussed in this article. Further research is needed to quantify the compounds produced and to determine their toxicity to patients and to dental care providers.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge