Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Endocrinology 2013-Nov

Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Mehrajuddin Bhat
Ramesh Kalam
Syed Syh Qadri
Seshacharyulu Madabushi
Ayesha Ismail

Kata kunci

Abstrak

Vitamin D deficiency leads to muscle wasting in both animals and humans. A vitamin D-deficient rat model was created using Sprague Dawley male rats. We studied the involvement of the ubiquitin proteasome and other proteolytic pathways in vitamin D deficiency-induced muscle atrophy. To delineate the effect of hypocalcemia that accompanies D deficiency, a group of deficient rats was supplemented with high calcium alone. Total protein degradation in muscle was assessed by release of tyrosine; proteasomal, lysosomal, and calpain enzyme activities were studied using specific substrates by fluorometry, and E2 enzyme expression was assessed by Western blot analysis. Muscle histology was done by myosin ATPase staining method, whereas 3-methylhistidine in the urine was estimated using HPLC. Muscle gene expression was measured by semiquantitative RT-PCR. Total protein degradation in muscle and the level of 3-methylhistidine in urine were increased in the deficient group compared with the control group. Proteasomal enzyme activities, expression of the E2 ubiquitin conjugating enzyme, and ubiquitin conjugates were increased in the deficient group compared with controls. On the other hand, lysosomal and calpain activities were not altered. Type II fiber area, a marker for muscle atrophy, was decreased in the deficient muscle compared with control muscle. Muscle atrophy marker genes and proteasomal subunit genes were up-regulated, whereas myogenic genes were down-regulated in D-deficient muscle. From the results it appears that the ubiquitin proteasome pathway is the major pathway involved in vitamin D deficiency-induced muscle protein degradation and that calcium supplementation alone in the absence of vitamin D partially corrects the changes.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge