Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2017-Sep

ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Radomira Vankova
Premysl Landa
Radka Podlipna
Petre I Dobrev
Sylva Prerostova
Lenka Langhansova
Alena Gaudinova
Katerina Motkova
Vojtech Knirsch
Tomas Vanek

Kata kunci

Abstrak

At present, nanoparticles have been more and more used in a wide range of areas. However, very little is known about the mechanisms of their impact on plants, as both positive and negative effects have been reported. As plant interactions with the environment are mediated by plant hormones, complex phytohormone analysis has been performed in order to characterize the effect of ZnO nanoparticles (mean size 30nm, concentration range 0.16-100mgL-1) on Arabidopsis thaliana plants. Taking into account that plant hormones exhibit high tissue-specificity as well as an intensive cross-talk in the regulation of growth and development as well as defense, plant responses were followed by determination of the content of five main phytohormones (cytokinins, auxins, abscisic acid, salicylic acid and jasmonic acid) in apices, leaves and roots. Increasing nanoparticle concentration was associated with gradually suppressed biosynthesis of the growth promoting hormones cytokinins and auxins in shoot apical meristems (apices). In contrast, cis-zeatin, a cytokinin associated with stress responses, was elevated by 280% and 590% upon exposure to nanoparticle concentrations 20 and 100mgL-1, respectively, in roots. Higher ZnO nanoparticle doses resulted in up-regulation of the stress hormone abscisic acid, mainly in apices and leaves. In case of salicylic acid, stimulation was found in leaves and roots. The other stress hormone jasmonic acid (as well as its active metabolite jasmonate isoleucine) was suppressed at the presence of nanoparticles. The earliest response to nanoparticles, associated with down-regulation of growth as well as of cytokinins and auxins, was observed in apices. At higher dose, up-regulation of abscisic acid, was detected. This increase, together with elevation of the other stress hormone - salicylic acid, indicates that plants sense nanoparticles as severe stress. Gradual accumulation of cis-zeatin in roots may contribute to relatively higher stress resistance of this tissue.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge