Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Pollution 2020-Jan

Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Jungang Chen
Jing Tang
Xinxiao Yu

Kata kunci

Abstrak

Biogenic volatile organic compounds (BVOCs) play essential roles in tropospheric chemistry, on both regional and global scales. The emissions of large quantities of species-specific BVOC depend not only on environmental (temperature, T; photosynthetically active radiation, PAR), but also physiological parameters (i.e. net photosynthetic rate, Pn; transpiration rate, Tr; stomatal conductance, gs and intercellular CO2 concentration, Ci). Here, isoprene, monoterpene and sesquiterpene emissions were determined from five dominant mature woody tree species in northern China, which are two evergreen conifers (Pinus tabuliformis and Platycladus orientalis) and three broad-leaved deciduous trees (Quercus variabilis, Populus tomentosa and Robinia pseudoacacia). A dynamic enclosure technique combined with GC-MS was used to sample BVOCs and analyse their fractional composition at daily and annual scales. The diurnal data showed that both isoprene and monoterpene emissions increased with increasing temperature, and reached their maximum emission rates in the peak of growing season for both coniferous and broad-leaved species. The emissions of individual compound within the monoterpenes and sesquiterpenes were statistically correlated with each other for all species. Furthermore, some oxygenated monoterpene emissions were highly correlated to sesquiterpenes in all tree species. Linking BVOC emissions to environmental and leaf physiological parameters exhibited that monoterpene emissions were linearly and positively correlated to the variation of T, PAR, Pn and Tr, while their relationship to gs and Ci is more complex. Collectively, these findings provided important information for improving current model estimations in terms of the linkage between BVOC emissions and plant physiological traits. The data presented in this study can be used to update emission capacity used in models, as this is the first time of reporting BVOC emissions from five dominant species in this region. The whole-year measurement of leaf-level BVOCs can also advance our understanding of seasonal variation in BVOC emissions.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge