Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Critical Reviews in Food Science and Nutrition 2020-Mar

Factors affecting the capsaicinoid profile of hot peppers and biological activity of their non-pungent analogs (Capsinoids) present in sweet peppers.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Virgílio Uarrota
Marcelo Maraschin
Ângela de Bairros
Romina Pedreschi

Kata kunci

Abstrak

Capsaicinoids are acid amides of C9-C11 branched-chain fatty acids and vanillylamine and constitute important chemical compounds of Capsicum annuum together with their non-pungent analogs (capsinoids) which have an impressive list of health benefit properties (i.e., analgesia, anti-obesity, thermogenic, cardiovascular, gastrointestinal, antioxidant, anti-bacterial, anti-virulence, anti-inflamatory, anti-diabetic, inhibits angiogenesis, and improves glucose metabolism) . In this review, the state of art on how capsaicinoids are affected by different pre- and postharvest factors is discussed together with their biological activity. For instance, high light intensity and heat treatments may reduce capsaicinoid content in fruits probably due to the loss of activity of capsaicin synthase (CS) and phenylalanine ammonia lyase (PAL). The pungency in peppers varies also with environment, genotype or cultivar, node position, fruiting and maturity stages, nitrogen and potassium contents. As the fruit mature, capsaicinoid levels increase. Fruits from the second node tend to have higher accumulation of pungency than those of other positions and the pungency decreases linearly as the node position increase. Sodium hydroxide treatment reduces the pungency of pepper fruit as it hydrolyzes and modifies one of the features (vanillyl group, the acid-amide linkage and alkyl side chain) of capsaicin molecule. Salt and water stress increase PAL and capsaicin synthase activity and increase the capsaicinoid accumulation in fruit, by negatively regulating peroxidase activity at appropriate levels. Future research must be directed in better understanding the changes of capsinoids during pre and post-harvest management, the causal drivers of the loss of activity of the aminotransferase gene (pAMT) and if possible, studies with genetically modified sweet peppers with functional pAMT. Available data provided in this review can be used in different agricultural programs related to developing new cultivars with specific pungency levels. The contents of capsaicinoids and capsinoids in both fresh fruits and marketed products are also of remarkable importance considering the preferences of certain niches in market where higher added-value products might be commercialized.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge