Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Virology 2020-May

Flagellin of Bacillus amyloliquefaciens works as a resistance inducer against groundnut bud necrosis virus in chilli (Capsicum annuum L.).

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
S Rajamanickam
S Nakkeeran

Kata kunci

Abstrak

Groundnut bud necrosis virus (GBNV), a member of the genus Tospovirus, has an extensive host range and is associated with necrosis disease of chilli (Capsicum annuum L.), which is a major threat to commercial production. Plant growth promoting rhizobacteria (PGPR) have been investigated for their antiviral activity in several crops and for their potential use in viral disease management. However, the microbial mechanisms associated with PGPR in triggered immunity against plant viruses have rarely been studied. To understand the innate immune responses activated by Bacillus spp. against GBNV, we studied microbe-associated molecular pattern (MAMP) triggered immunity (MTI) in chilli using transient expression of the flagellin gene of Bacillus amyloliquefaciens CRN9 from Agrobacterium clones, which also induced the expression of EAS1 gene transcripts coding for epi-aristolochene synthase, which is responsible for the accumulation of capsidiol phytoalexin. In addition, the transcript levels of WRKY33 transcription factor and salicylic acid (SA)-responsive defense genes such as NPR1, PAL, PO and SAR8.2 were increased. Jasmonate (JA)-responsive genes, viz., PDF, and LOX genes, were also upregulated in chilli plants challenged with GBNV. Further analysis revealed significant induction of these genes in chilli plants treated with B. amyloliquefaciens CRN9 and benzothiadiazole (BTH). The transcript levels of defense response genes and pathogenesis-related proteins were significantly higher in plants treated with Bacillus and BTH and remained significantly higher at 72 h post-inoculation and compared to the inoculated control. The plants treated with flagellin using the agrodrench method and exogenous treatment with B. amyloliquefaciens and BTH showed resistance to GBNV upon mechanical inoculation and a reduced virus titre which was confirmed by qPCR assays. Thus, transient expression of flagellin, a MAMP molecule from B. amyloliquefaciens CRN9, is able to trigger innate immunity and restrain virus growth in chilli via induced systemic resistance (ISR) activated by both the SA and JA/ET signalling pathways.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge