Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Amino Acids 2020-Oct

Physicochemical stability study of protein-benzoic acid complexes using molecular dynamics simulations

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Mahreen Arooj
Ihsan Shehadi
Chahlaa Nassab
Ahmed Mohamed

Kata kunci

Abstrak

Carboxyl-modified substrates are the most common chemical moieties that are frequently used as protein defibrillators. We studied the stability of protein-benzoic acid complexes with bovine serum albumin (BSA), zein and lysozyme proteins using various computational methods. Structural model for zein was built using homology modelling technique and molecular docking was used to prepare complex structures of all three proteins with benzoic acid. Molecular dynamics calculations performed on these complex structures provided a strong support for the stability of protein-benzoic acid complexes. The results from various analyses including root-mean-square deviation (RMSD) and radius of gyration showed the stability and compactness of all proteins-benzoic acid complexes. Moreover, exploration of structural fluctuations in proteins revealed the stability of active site residues. Two potential binding modes of benzoic acid with all three proteins were identified via cluster analysis. The binding mode which was retrieved from top cluster containing 86-91% of total conformations displayed very strong binding interactions for zein, BSA and lysozyme proteins. In addition, the results of binding mode showed that various interactions, including hydrogen binding, hydrophobic and electrostatic interactions were important for the optimal binding of benzoic acid with the active sites of proteins. Exploration of solvent accessible surface area showed that lysozyme-binding cavity was more exposed to the surface as compared to the other two proteins. Free energy analysis of all protein systems showed the stability of protein-benzoic acid complexes with lysozyme and BSA relatively more stable than zein system. The results of our study provided important insights to the dynamic and structural information about protein-benzoic acid interactions with BSA, zein and lysozyme proteins. This work is important in enhancing the stability of therapeutic protein drugs loaded on carboxyl substrates.

Keywords: Benzoic acid; Molecular dynamics calculations; Protein; Solvent accessibility; Stability.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge