Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2020-May

Selection of Agar Reagents for Medium Solidification Is a Critical Factor for Metal(loid) Sensitivity and Ionomic Profiles of Arabidopsis thaliana

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Shimpei Uraguchi
Yuka Ohshiro
Yuto Otsuka
Hikari Tsukioka
Nene Yoneyama
Haruka Sato
Momoko Hirakawa
Ryosuke Nakamura
Yasukazu Takanezawa
Masako Kiyono

Kata kunci

Abstrak

For researchers in the plant metal field, the agar reagent used for the solid plate medium is a problematic factor because application of different agar types and even a different lot of the same agar type can mask the plant metal-related phenotypes and impair the reproducibility. In this study, we systematically assessed effects of different agar reagents on metal(loid) sensitivity and element accumulation of the Arabidopsis metal sensitive mutants. Three established mutants (cad1-3, cad1-6, and abcc1/2), and three different types of purified agar reagents (Type A, Type E, and Nacalai) with two independent batches for each reagent were subjected to the analyses. First, we found that element concentrations in the agar reagents largely varied among the agar types. Then the effects of agar reagents on the mutant metal(loid)-sensitivity were examined under As(III), Hg(II), Cd(II), and excess Zn(II) conditions. A significant variation of the mutant metal(loid)-sensitivity was observed among the different agar plates but the variation depended on the combination of metal(loid) stress and agar reagents. Briefly, the type-dependent variation was more evident under As(III) and Hg(II) than Cd(II) or excess Zn(II) conditions. A lot-dependent variation was also observed for Type A and Type E but not for Nacalai: hypersensitive phenotypes of cad1-3, cad1-6, and abcc1/2 under As(III) or Hg(II) treatments were diminished when different batches of the Type A or Type E agar types were used. We also found a significant variation of As and Hg accumulation in the wild-type and cad1-3. Plant As and Hg concentrations were remarkably higher and the difference between the genotypes was more evident when grown with Type A agar plates. We finally analyzed ionomic profiles in the plants exposed to As(III) stress. Agar-type specific ionomic changes in cad1-3 were more observed with the Type A plates than with the Nacalai plates. The presented results overall suggest that suitability of agar reagents for metal(loid)-related phenotyping depends on the experimental design, and an inappropriate selection of agar reagents can mask even very clear phenotypes of the established mutant like cad1-3. We also discuss perspectives on the agar problem in the plant metal study.

Keywords: Arabidopsis; agar reagent; cad1-3; ionome; metal sensitivity; metal toxicity.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge