Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological and Pharmaceutical Bulletin 2020

Trimethylamine-N-oxide Specifically Impairs Endothelium-Derived Hyperpolarizing Factor-Type Relaxation in Rat Femoral Artery.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Takayuki Matsumoto
Mihoka Kojima
Keisuke Takayanagi
Kumiko Taguchi
Tsuneo Kobayashi

Kata kunci

Abstrak

Although substantial evidence suggests that an increase in the level of trimethylamine-N-oxide (TMAO) is associated with the risk of cardiovascular diseases, including atherosclerosis, chronic kidney diseases, and hypertension, the direct effect of TMAO on vascular endothelial function remains unclear. Therefore, we investigated the acute effects of TMAO on endothelium-dependent relaxation induced by acetylcholine (ACh) in the superior mesenteric arteries and femoral arteries of rat. In endothelium-intact preparations, it was observed that TMAO (300 µmol/L for 60 min) did not affect ACh-induced relaxation in either of the two arteries. In endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation under nitric oxide synthase (NOS) and cyclooxygenase (COX) inhibitions by Nω-nitro-L-arginine (L-NNA) and indomethacin, respectively, TMAO specifically impairs the relaxation in femoral arteries but not in the superior mesenteric arteries. Under the inhibitory actions of NOS and as well as blockade of intermediate-conductance calcium-activated potassium channel (IKCa) (by TRAM-34) and small-conductance calcium-activated potassium channel (SKCa) (by apamin), which are putative sources of EDHF, ACh-induced relaxation was low, and there were no differences between the control and TMAO-treated groups with respect to both arteries. In femoral arteries, TMAO slightly reduces ACh-induced relaxation in the presence of indomethacin (preserved NO and EDHF signals) but does not affect ACh-induced NO-mediated relaxation under the combined presence of indomethacin, TRAM-34, and apamin. These results suggest that acute treatment with TMAO specifically impairs EDHF-mediated relaxation in the femoral arteries but not in the superior mesenteric arteries. These novel observations show that TMAO is a causative factor in the development of peripheral arterial disease.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge