Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cadaverine/arabidopsis thaliana

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
10 hasil

Quantitative Trait Loci for Root Growth Response to Cadaverine in Arabidopsis.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Root growth architecture is a major determinant of agricultural productivity and plant fitness in natural ecosystems. Here we describe the methods used in a Quantitative Trait Loci (QTL) study that allowed the identification of ORGANIC CATION TRANSPORTER 1 (OCT1) as a determinant of root growth
CONCLUSIONS Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather
Polyamines, including cadaverine, are organic cations that affect numerous biological processes including transcription, translation, cell signalling, and ion channel activity. They often function in biotic and abiotic stress responses in plants. Because little is known about how plants respond to

Putrescine elicits ROS - dependent activation of the salicylic acid pathway in Arabidopsis thaliana

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Polyamines are small amines that accumulate during stress and contribute to disease resistance through as yet unknown signaling pathways. Using a comprehensive RNA-sequencing analysis, we show that early transcriptional responses triggered by each of the most abundant polyamines (putrescine,
Putrescine, 1,4-diaminobutane, is an intermediate in the biosynthesis of more complexed polyamines, spermidine and spermine. Unlike other eukaryotes, plants have evolved a multistep pathway for putrescine biosynthesis that utilizes arginine. In the final reaction, N-carbamoylputrescine is hydrolyzed
Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene

Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
UNASSIGNED The thermotolerant methylotrophic yeast Ogataea polymorpha has been regarded as an important organism for basic research and biotechnological applications. It is generally recognized as an efficient and safe cell factory in fermentative productions of chemicals, biofuels and other
In contrast to animals, where polyamine (PA) catabolism efficiently converts spermine (Spm) to putrescine (Put), plants have been considered to possess a PA catabolic pathway producing 1,3-diaminopropane, Delta(1)-pyrroline, the corresponding aldehyde, and hydrogen peroxide but unable to
Lysine decarboxylase (LDC) catalyzes the first-step in the biosynthetic pathway of quinolizidine alkaloids (QAs), which form a distinct, large family of plant alkaloids. A cDNA of lysine/ornithine decarboxylase (L/ODC) was isolated by differential transcript screening in QA-producing and

l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
l-lysine catabolic routes in plants include the saccharopine pathway to α-aminoadipate and decarboxylation of lysine to cadaverine. The current review will cover a third l-lysine metabolic pathway having a major role in plant systemic acquired resistance (SAR) to pathogen infection that was recently
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge