Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cinnamate/kentang

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
14 hasil
Previously, we isolated t-cinnamoyl-D-glucose as a possible intermediate in chlorogenic acid biosynthesis from sweet potato root. The enzyme which catalyzes the formation of t-cinnamoyl-D-glucose has been purified 539-fold from sweet potato root (Ipomoea batatas Lam.) and characterized. It required

Studies on the induction of cinnamic acid 4-hydroxylase in potato tuber.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The change in activity of cinnamic acid 4-hydroxylase (CA4H) in potato parenchyma tissue exposed to various conditions has been examined. Maximum induction of CA4H activity was obtained at 18 hr of incubation. Though CA4H induction can occur in dark, over 100% increase in enzyme activity was
The outer potato periderm layer consists of dead suberized cells. Suberin, a protective biopolymer, is made of a polyaliphatic portion covalently linked to polyaromatic moieties. Evidence accumulates that Streptomyces scabies, the main causal agent of potato common scab, can degrade the

Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
In the first step of the phenylpropanoid metabolic pathway, L-phenylalanine (L-Phe) is deaminated to form E-cinnamate, in a conversion catalyzed by phenylalanine ammonia-lyase (PAL; EC 4.3.1.5). The metabolic fate of the ammonium ion (NH4+) produced in this reaction was investigated in sweet potato

Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate
Ortho-hydroxylation of cinnamates is a key step in coumarin biosynthesis in plants. Ortho-hydroxylated cinnamates undergo trans/cis isomerization of the side-chain and then lactonization to form coumarins. Sweet potato [Ipomoea batatas (L.) Lam.] accumulates umbelliferone and scopoletin after biotic
The enzymes described here are the membrane-bound L-phenylalanine ammonia-lyase and cinnamate hydroxylase. Microsomes prepared from tubers of Solanum tuberosum L. are capable of converting L-phenylalanine into both o- and p-coumaric acid. Three microsomal fractions obtained by density gradient

Pre-heating and polyphenol oxidase inhibition impact on extraction of purple sweet potato anthocyanins.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Purple sweet potatoes (PSP) have been used as a natural food colorant with high acylated anthocyanins concentrations. Commercially extracting pigments from PSP can be challenging due to firm texture and high polyphenol oxidase (PPO) content. These studies evaluated hot water immersions (30, 50, 70,
The phenylalanine analogue 3-(1,4-cyclohexadienyl)-L-alanine is converted to the hitherto unknown cinnamate analogue trans-3-(1,4-cyclohexadienyl)acrylic acid by L-phenylalanine ammonia-lyase (EC 4.3.1.5) from maize, potato, or Rhodotorula glutinis. The structure assigned to the product is confirmed

l-Phenylalanine Ammonia-Lyase (Maize): Evidence for a Common Catalytic Site for l-Phenylalanine and l-Tyrosine.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
l-Phenylalanine ammonia-lyase (E.C. 4.3.1.5) from maize is active with l-tyrosine and l-phenylalanine and exhibits atypical Michaelis-Menten kinetics with both substrates. With phenylalanine as a substrate, the pH optimum is 8.7 and with tyrosine, 7.7. The estimated Km at high substrate

Hybridization of the natural antibiotic, cinnamic acid, with layered double hydroxides (LDH) as green pesticide.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
OBJECTIVE Heavy application of highly toxic synthetic pesticides has been committed to protect crops against insects and diseases, which have brought about serious environmental problems. Thus, an inevitable and fundamental issue has been how to protect crops without harmful effects on nature. As a

Toxicity of allyl esters in insect cell lines and in Spodoptera littoralis larvae.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
We investigated the effects of five allyl esters, two aromatic (allyl cinnamate and allyl 2-furoate) and three aliphatic (allyl hexanoate, allyl heptanoate, and allyl octanoate) in established insect cell lines derived from different species and tissues. We studied embryonic cells of the fruit fly

Status of bioactive compounds in foods, with focus on fruits and vegetables.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Components of cereals, legumes, pulses, proteins, sea food, milk, carbohydrates and lipids are being evaluated for their influence on human health, as biofunctional compounds. However, references dealing with fruits and vegetables exceed any other food group and accordingly their focus. Fruits and

Biosynthesis of salicylic acid in plants.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Salicylic acid (SA) is an important signal molecule in plants. Two pathways of SA biosynthesis have been proposed in plants. Biochemical studies using isotope feeding have suggested that plants synthesize SA from cinnamate produced by the activity of phenylalanine ammonia lyase (PAL). Silencing of
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge