Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

decarboxylase/cannabis

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
Halaman 1 dari 23 hasil

Cannabinoid receptor CB1-like and glutamic acid decarboxylase-like immunoreactivities in the brain of Xenopus laevis.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Investigation of the cannabinoid system in a vertebrate group phylogenetically distant from mammals might improve understanding of its physiological role. Thus, in the present study, the distribution of the cannabinoid CB1 receptor has been investigated in the brain of Xenopus laevis (anuran
BACKGROUND Levels of cannabinoid 1 receptor (CB1R) messenger RNA (mRNA) and protein, which are expressed most heavily in the cholecystokinin class of γ-aminobutyric acid (GABA) neurons, are lower in the dorsolateral prefrontal cortex in schizophrenia, and the magnitude of these differences is

The role of cannabinoid 1 receptor expressing interneurons in behavior.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of the disease and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation

Cannabinoids facilitate the swallowing reflex elicited by the superior laryngeal nerve stimulation in rats.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1) and 2 (CB2). The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the
Double-label in situ hybridization was used to identify the phenotypes of striatal neurons that express mRNA for cannabinoid CB(1) receptors. Simultaneous detection of multiple mRNAs was performed by combining a (35)S-labeled ribonucleotide probe for CB(1) mRNA with digoxigenin-labeled riboprobes
The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson's Disease (PD).
A long line of experimental evidence indicates that endogenous cannabinoid mechanisms play important roles in nociceptive information processing in various areas of the nervous system including the spinal cord. Although it is extensively documented that the cannabinoid-1 receptor (CB(1)-R) is
Neuronal electrical oscillations in the theta (4-14 Hz) and gamma (30-80 Hz) ranges are necessary for the performance of certain animal behaviours and cognitive processes. Perisomatic GABAergic inhibition is prominently involved in cortical oscillations driven by ACh release from septal cholinergic
At present, little is known about the mechanisms by which cannabinoids exert their effects on the central nervous system. In this study, fluorescence imaging and electrophysiological techniques were used to investigate the functional relationship between cell surface cannabinoid type 1 (CB(1))

Cannabis derivatives therapy for a seronegative stiff-person syndrome: a case report.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
OBJECTIVE Stiff-person syndrome (SPS) is an uncommon and disabling disorder characterized by progressive rigidity and episodic painful spasms involving axial and limb musculature. SPS treatment is mostly based on benzodiazepines, baclofen, immunosuppressants and intravenous immunoglobulin. Cannabis
The acute effects of cannabinoid drugs on the synthesis of noradrenaline, dopamine, and serotonin (5-HT) were assessed, simultaneously, using the accumulation of 3,4-dihydroxyphenylalanine (dopa) and 5-hydroxytryptophan (5-HTP) after decarboxylase inhibition as a measure of the rate of tyrosine and
We have recently examined the status of the endocannabinoid transmission in the basal ganglia in Huntington's disease (HD) using a rat model generated by bilateral intrastriatal injections of 3-nitropropionic acid (3-NP). In these previous studies, we focused on the early phase of hyperactivity that

The gamma-aminobutyric acid system in rat cerebellum during cannabinoid-induced cataleptoid state.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Repeated, but not single, intraperitoneal injections of delta1,6-tetrahydrocannabinol (delta1,6-THC) 20 mg/kg to rats administered daily for two weeks, produced increased gamma-aminobutyric acid (GABA) concentration and decreased glutamic acid decarboxylase (GAD) activity in the cerebellum, as well
Type 1 cannabinoid receptor (CB1) is the principal mediator of retrograde endocannabinoid signaling in the brain. In this study, we addressed the topographic distribution and amino acid neurotransmitter phenotype of endocannabinoid-sensitive hypothalamic neurons in mice. The in situ hybridization

The activation of cannabinoid receptors in striatonigral GABAergic neurons inhibited GABA uptake.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Cannabinoid receptors (CNRs) in basal ganglia are located on striatal efferent neurons which are gamma-aminobutiric acid (GABA)-containing neurons. Recently, we have demonstrated that CN-induced motor inhibition is reversed by GABA-B, but not GABA-A, receptor antagonists, presumably indicating that
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge