Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

diabetes mellitus/phosphatase

Tautan disimpan ke clipboard
Halaman 1 dari 1403 hasil
Islet cell antibodies (ICA), the classical autoimmunity marker for insulin-dependent diabetes mellitus (IDDM), are detected in approximately 85% of children with recently diagnosed diabetes. Because the ICA assay is semiquantitative and difficult to standardize, alternative assays are needed. When
Metformin is widely regarded as the standard first-line antidiabetic agent, in terms of efficacy and safety profiles. However, in most patients with type II diabetes mellitus (T2DM), it was found that metformin alone is not enough to adequately control hyperglycemia. Thus, we designed this study

Potential Inhibitors of Protein Tyrosine Phosphatase (PTP1B) Enzyme: Promising Target for Type-II Diabetes Mellitus

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Background: There has been growing interest in the development of highly potent and selective protein tyrosine phosphatase (PTP1B) inhibitors for the past 2-3 decades. Though most PTPs share a common active site motif, the interest on
Protein tyrosine phosphatase 1B (PTP1B) is a widely confirmed target of the type 2 diabetes mellitus (T2DM) treatment. Herein, we reported a highly specific PTP1B inhibitor 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxydiphenylmethane (compound 1), which showed promising hypoglycemic activity in

Mutation/polymorphism scanning of glucose-6-phosphatase gene promoter in noninsulin-dependent diabetes mellitus patients.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Glucose-6-phosphatase (G6Pase) catalyzes the rate-limiting step of gluconeogenesis, and hepatic G6Pase activity is increased in diabetes. We have cloned and analyzed the human G6Pase gene promoter region and identified putative regulatory sequences for insulin, cAMP, glucocorticoid, and hepatocyte

Bone isoenzyme of serum alkaline phosphatase in diabetes mellitus.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Increased activity of bone isoenzyme of serum alkaline phosphatase was found in 52, 82 and 72% of the patients on dietary, oral agents, and insulin regimens, respectively. Significant positive correlations between the activity of bone isoenzyme and urinary hydroxyproline excretion in diabetes are
An 83-year-old Japanese woman given a diagnosis of type 2 diabetes mellitus 3 years previously was hospitalized for markedly elevated plasma glucose (386 mg/dl) and glycated hemoglobin (9.3%) levels. Laboratory study results showed urinary connecting peptide immunoreactivity (CPR) concentrations of
Low-molecular-weight acid phosphatase (ACP1) is a polymorphic protein-tyrosine phosphatase present in all human tissues, including adipocytes. A positive association between the low-activity ACP1*A/*A genotype and extreme body mass index has previously been shown by us in obese subjects from the
Chronic periodontitis is a multifactorial disease resulting in the inflammation and destruction of the supporting structures around the teeth, leading to tooth mobility and subsequent loss of tooth. Metabolic disorders, such as diabetes mellitus, play a crucial role in the progression
OBJECTIVE Diabetes mellitus type 2 (DM-2) is a complex disorder with a strong genetic background. Protein tyrosine phosphatase-1B (PTP-1B) dephosphorylates various receptor protein kinases in vitro, including the beta subunit of the insulin receptor, therefore representing a potential candidate to

The 37/40-kilodalton autoantigen in insulin-dependent diabetes mellitus is the putative tyrosine phosphatase IA-2.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Major targets for autoantibodies associated with the development of insulin-dependent diabetes mellitus (IDDM) include tryptic fragments with a molecular mass of 37 kDa and/or 40 kDa of a pancreatic islet cell antigen of unknown identity. The assay identifying autoantibodies against the 37/40-kDa
The receptor-type protein tyrosine phosphatase IA-2beta gene (mouse gene symbol Ptprn2) encodes a major autoantigen in insulin-dependent diabetes mellitus. We physically mapped Ptprn2 by fluorescence in situ hybridization to band F of mouse chromosome 12, a region that lacks diabetes susceptibility
Protein tyrosine phosphatases (PTPs) are required for the dephosphorylation of the insulin receptor (IR) and its initial cellular substrates, and it has recently been reported that PTP-1B may play a role in the pathogenesis of insulin resistance in obesity and type 2 diabetes mellitus (DM). We
To estimate the ability of intracellular tyrosine phosphatases modulation by arachidonic acid metabolites in patients with diabetes mellitus 2 type during foot wounds healing the inhibitory analysis of platelets aggregation induced by ATP plus inhibitors of tyrosine phosphatases, cyclooxygenases and
The incidence of type-1 Diabetes Mellitus (T1DM) has increased steadily in Kuwait during recent years and it is now considered amongst the high-incidence countries. An interaction between susceptibility genes, immune system mediators and environmental factors predispose susceptible individuals to
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge