Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lipoxygenase/hypoxia

Tautan disimpan ke clipboard
Halaman 1 dari 204 hasil
Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses,

Influence of hypoxia on 5-lipoxygenase pathway in rat alveolar macrophages.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The effect of hypoxia was studied on the ionophore A23187-induced leukotriene production by rat alveolar macrophages. The production of LTB4 and LTC4 decreased with reducing oxygenation without change of cell viability. The synthesis of 5-HETE increased during hypoxia and the total production of
We have previously shown that 15-lipoxygenase (15-LOX) and its metabolite 15-hydroxyeicosanoid (15-HETE) play a critical role on hypoxia-triggered pulmonary artery smooth muscle cell (PASMC) phenotype alteration through multifactorial pathways, like extracellular signal-regulated kinase and p38

Expression of 15-lipoxygenases in pulmonary arteries after hypoxia.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
OBJECTIVE We have previously reported that subacute hypoxia upregulates and activates the steady state expression of pulmonary artery 15-lipoxygenase (15-LOX). However, there are two 15-LOX isoenzymes, 15-LOX-1 and 15-LOX-2, which are expressed in pulmonary arteries that have not been previously

15-Lipoxygenase promotes chronic hypoxia-induced phenotype changes of PASMCs via positive feedback-loop of BMP4.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Our laboratory has previously demonstrated that 15-lipoxygenase (15-LO)/15-hydroxyeicosatetr-aenoic acid (15-HETE) is involved in hypoxic pulmonary arterial hypertension (PAH). Phenotypical alterations of vascular smooth muscle cells are considered to be an important stage in the development of PAH,
15-Lipoxygenase (15-LO) is an important factor in the pathogenesis of pulmonary artery hypertension (PAH). However, the role of 15-LO in the adventitia of the pulmonary arterial wall is unclear. The aim of this study was to explore the role of 15-LO in the modulation of pulmonary adventitial

15-Lipoxygenase-2 is expressed in macrophages in human carotid plaques and regulated by hypoxia-inducible factor-1alpha.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
BACKGROUND Macrophages are prominent in hypoxic areas of atherosclerotic lesions and their secreted cytokines, growth factors and activity of enzymes are involved in atherogenesis. Previously, we showed that 15-lipoxygenase (LOX)-2 is expressed in human monocyte-derived macrophages and that hypoxia
OBJECTIVE To investigate whether 15-Lipoxygenase-1 (15-LOX-1) plays an important role in the regulation of angiogenesis, inhibiting hypoxia-induced proliferation of retinal microvascular endothelial cells (RMVECs) and the underlying mechanism. METHODS Primary RMVECs were isolated from the retinas of
In experiments on the primary culture of isolated neonatal rat cardiomyocytes it was determined that cardiomyocytes express ALOX5 gene encoding enzyme 5-lipoxygenase. Anoxia-reoxygenation does not affect significantly the expression of 5-lipoxygenase mRNA in cardiomyocytes. Transfection of
OBJECTIVE Our laboratory has previously demonstrated that 15-lipoxygenase (15-LO)/15-hydroxyeicosatetraenoic acid (15-HETE) is involved in hypoxic pulmonary arterial hypertension. Chronic hypoxia-induced vascular inflammation has been considered as an important stage in the development of pulmonary
Hypoxia causes localized pulmonary arterial (PA) constriction to divert blood flow to optimally ventilated regions of the lung. The biochemical mechanisms for this have remained elusive, especially during prolonged exposures to reduced PO2. We have evidence that subacute hypoxia activates
Our laboratory has proved that 15-hydroxyeicosatetraenoic acid, a product of arachidonic acid catalyzed by 15-lipoxygenase (15-LO), plays a pivotal role in hypoxic pulmonary arterial hypertension. However, the mechanisms of how hypoxia regulates 15-LO expression are still unclear. As the formation

Heme oxygenase-1 induces 15-lipoxygenase expression during hypoxia-induced pulmonary hypertension.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
We previously reported that 15-lipoxygenase (15-LO) induced by hypoxia catalyzed the conversion of arachidonic acid (AA) into 15-hydroxyeicosatetraenoic acid (15-HETE), which plays an essential role in the development of hypoxic pulmonary arterial hypertension (HPH). However, the mechanisms by which

12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
12-Lipoxygenase, an arachidonic acid metabolizing enzyme of the lipoxygenase pathway, has been implicated as a major factor in promoting prostate cancer progression and metastasis. The ability of 12-LOX to aggravate the disease was linked to its proangiogenic role. Recent studies clearly

Chronic hypoxia enhances 15-lipoxygenase-mediated vasorelaxation in rabbit arteries.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
15-Lipoxygenase (15-LO-1) metabolizes arachidonic acid (AA) to 11,12,15-trihydroxyeicosatrienoic acids (THETAs) and 15-hydroxy-11,12-epoxyeicosatrienoic acids (HEETA) that dilate rabbit arteries. Increased endothelial 15-LO-1 expression enhances arterial relaxations to agonists. We tested the effect
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge