Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lutein/arabidopsis thaliana

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
Halaman 1 dari 55 hasil

Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH

Engineering the lutein epoxide cycle into Arabidopsis thaliana.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Although sunlight provides the energy necessary for plants to survive and grow, light can also damage reaction centers of photosystem II (PSII) and reduce photochemical efficiency. To prevent damage, plants possess photoprotective mechanisms that dissipate excess excitation. A subset of these
The high light-induced bleaching of photosynthetic pigments and the degradation of proteins of light-harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein-deficient mutant lut2, with the aim of unraveling the role of lutein for
Ecologically relevant low UV-B is reported to alter reactive oxygen species metabolism and anti-oxidative systems through an up-regulation of enzymes of the phenylpropanoid pathway. However, little is known about low UV-B-induced changes in carotenoid profile and their impacts on light harvesting
Ultrafast excitation relaxation dynamics and energy-transfer processes in the light-harvesting complex II (LHC II) of Arabidopsis thaliana were examined at physiological temperature using femtosecond time-resolved fluorescence spectroscopy. Energy transfer from lutein to Chl a proceeded with a rate
This study compares Photosystem II (PS II) chlorophyll (Chl) a fluorescence yield changes of Arabidopsis thaliana L. nuclear gene mutants, thoughtfully provided by the authors of Pogson et al. (1998 Proc Natl Acad Sci USA 95: 13324-13329). One single mutant (npq1) inhibits the violaxanthin
BACKGROUND Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. RESULTS To
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid DeltapH in excess light and depends on the xanthophyll cycle,

Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
When light absorption by a plant exceeds its capacity for light utilization, photosynthetic light harvesting is rapidly downregulated by photoprotective thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). To address the involvement of specific
Xanthophylls (oxygen derivatives of carotenes) are essential components of the plant photosynthetic apparatus. Lutein, the most abundant xanthophyll, is attached primarily to the bulk antenna complex, light-harvesting complex (LHC) II. We have used mutations in Arabidopsis thaliana that selectively

Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Chlorophyll triplet excited states are by-products of photosynthetic processes that can indirectly harm biological membranes by forming highly reactive oxygen species. A crucial photoprotective mechanism evolved by plants to counter this threat involves the triplet energy transfer from chlorophylls

Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Non-photochemical quenching, NPQ, of chlorophyll fluorescence regulates the heat dissipation of chlorophyll excited states and determines the efficiency of the oxygenic photosynthetic systems. NPQ is regulated by a pH-sensing protein, responding to the chloroplast lumen acidification induced by

The role of lutein in the acclimation of higher plant chloroplast membranes to suboptimal conditions.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Two mutants of Arabidopsis thaliana deficient in lutein have been investigated with respect to their responses to growth under a range of suboptimal conditions. The first mutant, lut1, was enriched in violaxanthin, antheraxanthin, zeaxanthin and zeinoxanthin compared with the wild-type (WT). In the

Functional Characterization of Lycopene Cyclases Illustrates the Metabolic Pathway towards Lutein in Red Algal Seaweeds.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Carotenoids are essential phytonutrients synthesized by all photosynthetic organisms. Acyclic lycopene is the first branching point for carotenoid biosynthesis. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of its open ends and direct the metabolic flux into
Protochlorophyllide (Pchlide) accumulation and xantophyll composition were studied in 5-day old etiolated seedlings of three ecotypes of Arabidopsis thaliana: Columbia (Col-0), Landsberg erecta (Ler) and Wassiliewska (Ws). The total Pchlide level as measured by fluorescence spectroscopy varied
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge