Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

naringenin/arabidopsis

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
Halaman 1 dari 40 hasil

Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Two sustainable and cost-effective cascade enzymatic systems were developed to regenerate uridine diphosphate (UDP)-α-D-glucose and UDP-β-L-rhamnose from sucrose. The systems were coupled with the UDP generating glycosylation reactions of UDP sugar-dependent glycosyltransferase (UGT) enzymes

Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Flavonoids are a group of polyphenolic compounds that have been recognized as important due to their physiological and pharmacological roles and their health benefits. Glycosylation of flavonoids has a wide range of effects on flavonoid solubility, stability, and bioavailability. We previously
Prenylated flavonoids are natural compounds that often represent the active components in various medicinal plants and exhibit beneficial effects on human health. Prenylated flavonoids are hybrid products composed of a flavonoid core mainly attached to either 5-carbon (dimethylallyl) or 10-carbon
Flavonoids, which comprise a large family of secondary plant metabolites, have received increased attention in recent years due to their wide range of features beneficial to human health. One of the most abundant flavonoid skeletons in citrus species is the flavanone naringenin, which is accumulated

Regiospecific modifications of naringenin for astragalin production in Escherichia coli.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
We report the production of astragalin (AST) from regiospecific modifications of naringenin (NRN) in Escherichia coli BL21(DE3). The exogenously supplied NRN was converted into dihydrokaempferol (DHK) and then kaempferol (KMF) in the presence of flavanone-3-hydroxylase (f3h) and flavonone synthase

De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
BACKGROUND Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome
Flavonoids fulfill an enormous range of biological functions in plants. In seeds, these compounds play several roles; for instance proanthocyanidins protect them from moisture, pathogen attacks, mechanical stress, UV radiation, etc., and flavonols have been suggested to protect the embryo from

CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
C-Glycosylflavones are ubiquitous in the plant kingdom, and many of them have beneficial effects on human health. They are a special group of flavonoid glycosides in which the sugars are C-linked to the flavone skeleton. It has been long presumed that C-glycosylflavones have a different biosynthetic
A putative type-I chalcone isomerase (CHI) cDNA clone EuNOD-CHI was previously isolated from the root nodule of Elaeagnus umbellata [Kim et al. (2003)]. To see if it encodes a functional CHI, we ectopically overexpressed it in the Arabidopsis (Arabidopsis thaliana) transparent testa 5 (tt5) mutant,
Metabolomics is facing a major challenge: the lack of knowledge about metabolites present in a given biological system. Thus, large-scale discovery of metabolites is considered an essential step toward a better understanding of plant metabolism. We show here that the application of a metabolomics

Azorhizobium caulinodans ORS571 colonizes the xylem of Arabidopsis thaliana.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Improved conditions were used for the aseptic growth of Arabidopsis thaliana to investigate whether xylem colonization of A. thaliana by Azorhizobium caulinodans ORS571 might occur. When seedlings were inoculated with ORS571 (pXLGD4) tagged with the lacZ reporter gene, nearly all of the plants

Expression of parsley flavone synthase I establishes the flavone biosynthetic pathway in Arabidopsis thaliana.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Arabidopsis thaliana lacks the flavone biosynthetic pathway, probably because of a lack or low activity of a flavone synthase. To establish this biosynthetic pathway in Arabidopsis, we subjected this model plant to transformation with the parsley gene for flavone synthase type I (FNS-I). Transgenic

Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The ability of Azorhizobium caulinodans ORS571 and other diazotrophic bacteria to internally colonize roots of Arabidopsis thaliana has been studied. Strains tagged with lacZ or gusA reporter genes were used, and the principal colonization sites were found to be the points of emergence of lateral
Differential screening by PCR-select subtraction was carried out for cDNAs from leaves of red and green perilla, two chemovarietal forms of Perilla frutescens regarding anthocyanin accumulation. One hundred and twenty cDNA fragments were selected as the clones preferentially expressed in
A flavonoid 3'-hydroxylase from tea plant was engineered to synthesize B-3',4'-dihydroxylated flavones such as eriodictyol, dihydroquercetin and quercetin. Four articifical P450 constructs harboring both flavonoid 3'-hydroxylase gene from Camellia sinensis (CsF3'H) and P450 reductase gene from
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge