Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

neoplasms/phosphatase

Tautan disimpan ke clipboard
Halaman 1 dari 5238 hasil

The Eya phosphatase: Its unique role in cancer.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The Eya proteins were originally identified as essential transcriptional co-activators of the Six family of homeoproteins. Subsequently, the highly conserved C-terminal domains of the Eya proteins were discovered to act as a Mg2+-dependent Tyr phosphatases, making Eyas the first transcriptional
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a lipid phosphatase that regulates mitogenic signaling pathways, and deficiency of PTEN results in cell proliferation, survival, and malignancy. Murine liver-specific Pten deletion models develop liver malignancy by 12 months of age.
The phosphatase of regenerating liver (PRL) family, a unique class of oncogenic phosphatases, consists of three members: PRL-1, PRL-2, and PRL-3. Aberrant overexpression of PRL-3 has been found in multiple solid tumor types. Ectopic expression of PRLs in cells induces transformation, increases

Phosphatase of regenerating liver: a novel target for cancer therapy.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
BACKGROUND Phosphatases of regenerating livers (PRLs) are novel oncogenes that interact with many well-established cell signaling pathways that are misregulated in cancer, and are known to drive cancer metastasis when overexpressed. METHODS This review covers basic information of the discovery and

Role of wild-type p53-induced phosphatase 1 in cancer.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Wild-type p53-induced phosphatase (Wip1) is a member of the protein phosphatase type 2C family and is an established oncogene due to its dephosphorylation of several tumor suppressors and negative control of the DNA damage response system. It has been reported to dephosphorylate p53, ataxia

WIP1 phosphatase as pharmacological target in cancer therapy.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
DNA damage response (DDR) pathway protects cells from genome instability and prevents cancer development. Tumor suppressor p53 is a key molecule that interconnects DDR, cell cycle checkpoints, and cell fate decisions in the presence of genotoxic stress. Inactivating mutations in TP53 and other genes

Suppression of cancer cell migration and invasion by protein phosphatase 2A through dephosphorylation of mu- and m-calpains.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The mu- and m-calpains are major members of the calpain family that play an essential role in regulating cell motility. We have recently discovered that nicotine-activated protein kinase C iota enhances calpain phosphorylation in association with enhanced calpain activity and accelerated migration

Wip1: A candidate phosphatase for cancer diagnosis and treatment.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The critical regulatory mechanisms in numerous cellular pathways including cell survival and DNA damage response mostly depend on phosphorylation and dephosphorylation of proteins. The serine/threonine phosphatase wild-type p53-induced phosphatase 1 (Wip1) is a growth-promoting phosphatase and its
OBJECTIVE The okadaic acid class of tumor promoters, which are inhibitors of protein phosphatases 1 and 2A (PP1 and PP2A), induced tumor promotion in mouse skin, rat glandular stomach, and rat liver. Endogenous protein inhibitors of PP2A, SET and CIP2A, were up-regulated in various human cancers, so
Deep genetic studies revealed that phosphatase and tensin homolog (PTEN) mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase
OBJECTIVE The effects of antipsychotics on various gene expressions through change in DNA methylation have been reported. Dual-specificity phosphatase 6 (DUSP6) is an extracellular signal regulated kinase 1/2 (ERK1/2)-selective phosphatase, and its expression can be suppressed by intronic
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase that can dephosphorylate multiple kinases. It is generally considered to be a cancer suppressor as its inhibition can induce phosphorylation and activation of substrate kinases that mainly accelerate growth. We previously

Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in colorectal cancer.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Most colorectal cancer (CRC) cell lines are identified to overexpress phosphoserine phosphatase (PSPH), which regulates the intracellular synthesis of serine and glycine, and supports tumor growth. In this study, the effect of PSPH on 5-fluorouracil (5-FU) efficacy was evaluated. CRC cells exposed
Dual-specificity phosphatase 5 (DUSP5), which regulates the duration and magnitude of ERK1/2 phosphoactivation within the mitogen-activated protein kinase (MAPK) cascade, has recently been proposed to be a tumor suppressor. However, the epigenetic regulation of DUSP5 and its critical roles in
LNCaP cells (derived from a lymph node carcinoma of the human prostate) show androgen responsive growth. Progestagens, estradiol and antiandrogens competed with androgens for binding to the androgen receptor in the cells to a higher extent than in other androgen-sensitive systems. Optimal growth
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge