Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

nevadensin/selasih

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
10 hasil
According to the earlier literature the optimum harvest time for basil is at the full flowering stage if accumulation of essential oil is taken into account. In this research we have investigated our gene-bank stored basil accessions to determine whether the harvest timing is variety specific or not
Regioselective 6-,7-,8-,3'-, and 4'-O-methylations underlie the structural diversity of lipophilic flavones produced in the trichomes of sweet basil (Ocimum basilicum L.). The positions 6, 7, and 4' are methylated by a recently described set of cation-independent enzymes. The roles of
METHODS The present work investigates whether the previous observation that the basil flavonoid nevadensin is able to inhibit sulfotransferase (SULT)-mediated estragole DNA adduct formation in primary rat hepatocytes could be validated in vivo. RESULTS Estragole and nevadensin were co-administered
The alkenylbenzene methyleugenol occurs naturally in a variety of spices and herbs, including basil, and their essential oils. At high dose levels methyleugenol induces hepatocarcinogenicity in rodents following bioactivation to 1'-sulfooxymethyleugenol which forms DNA adducts. This study
Small molecule demethylation is considered unusual in plants. Of the studied instances, the N-demethylation of nicotine is catalyzed by a Cyt P450 monooxygenase, while the O-dealkylation of alkaloids in Papaver somniferum is mediated by 2-oxoglutarate-dependent dioxygenases (2-ODDs). This report
Methyleugenol (ME) occurs naturally in a variety of spices, herbs, including basil, and their essential oils. ME induces hepatomas in rodent bioassays following its conversion to a DNA reactive metabolite. In the present study, the basil constituent nevadensin was shown to be able to inhibit

The potential effects of Ocimum basilicum on health: a review of pharmacological and toxicological studies.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
BACKGROUND Basil (Ocimum basilicum L., OB) is a plant world widely used as a spice and a typical ingredient of the healthy Mediterranean diet. In traditional medicine, OB is indicated for many maladies and conditions; OB-containing nutritional supplements are increasingly sold. Conversely, safety

The roles of a flavone-6-hydroxylase and 7-O-demethylation in the flavone biosynthetic network of sweet basil.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Lipophilic flavonoids found in the Lamiaceae exhibit unusual 6- and 8-hydroxylations whose enzymatic basis is unknown. We show that crude protein extracts from peltate trichomes of sweet basil (Ocimum basilicum L.) cultivars readily hydroxylate position 6 of 7-O-methylated apigenin but not apigenin

Matrix-derived combination effect and risk assessment for estragole from basil-containing plant food supplements (PFS).

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Basil-containing plant food supplements (PFS) can contain estragole which can be metabolised into a genotoxic and carcinogenic 1'-sulfoxymetabolite. This study describes the inhibition of sulfotransferase (SULT)-mediated bioactivation of estragole by compounds present in basil-containing PFS.
Estragole is a natural constituent of several herbs and spices including sweet basil. In rodent bioassays, estragole induces hepatomas, an effect ascribed to estragole bioactivation to 1'-sulfooxyestragole resulting in DNA adduct formation. The present paper identifies nevadensin as a basil
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge