Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

nitrogenase/hypoxia

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
10 hasil

Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Biological nitrogen fixation constitutes the main input of fixed nitrogen to Earth's ecosystems, and its isotope effect is a key parameter in isotope-based interpretations of the N cycle. The nitrogen isotopic composition (δ(15)N) of newly fixed N is currently believed to be ∼-1‰, based on
Legume-rhizobia symbiotic associations have beneficial effects on food security and nutrition, health and climate change. Hypoxia induced by flooding produces nitric oxide (NO) in nodules from soybean plants cultivated in nitrate-containing soils. As NO is a strong inhibitor of nitrogenase

Both nitrate reductases and hemoglobins control the nitrogen-fixing symbiosis via the regulation of nitric oxide level

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The interactions between legumes and Rhizobia lead to the establishment of a symbiotic relationship characterized by the formation of a new organ, the nodule, which facilitates the fixation of atmospheric nitrogen (N2) by nitrogenase through the creation of a hypoxic environment. Nitric oxide (NO)
Microbial interactions driving key biogeochemical fluxes often occur within multispecies consortia that form spatially heterogeneous microenvironments. Here, we describe the "green berry" consortia of the Sippewissett salt marsh (Falmouth, MA, United States): millimeter-sized aggregates dominated by

Transcription of hupSL in Anabaena variabilis ATCC 29413 is regulated by NtcA and not by hydrogen.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Nitrogen-fixing cyanobacteria such as Anabaena variabilis ATCC 29413 use an uptake hydrogenase, encoded by hupSL, to recycle hydrogen gas that is produced as an obligate by-product of nitrogen fixation. The regulation of hupSL in A. variabilis is likely to differ from that of the closely related
Nitrate reductase (NR) is the first enzyme of the nitrogen reduction pathway in plants, leading to the production of ammonia. However, in the nitrogen-fixing symbiosis between legumes and rhizobia, atmospheric nitrogen (N2) is directly reduced to ammonia by the bacterial nitrogenase,
Cyanide is a nitrile which is used extensively in many industries like jewelry, mining, electroplating, plastics, dyes, paints, pharmaceuticals, food processing, and coal coking. Cyanides pose a serious health hazard due to their high affinity towards metals and cause malfunction of cellular
Nitrogen fixation of the nodule of soybean is highly sensitive to oxygen deficiency such as provoked by waterlogging of the root system. This study aimed to evaluate the effects of flooding on N metabolism in nodules of soybean. Flooding resulted in a marked decrease of asparagine (the most abundant

A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using
N2 -fixing nodules are formed on the roots of legume plants as result of the symbiotic interaction with rhizobia. Nodule functioning requires high amounts of carbon and energy and therefore legumes have developed finely tuned mechanisms to cope with the changing external environmental
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge