Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

omega 3 fatty acid/cannabis

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
Halaman 1 dari 55 hasil

Cannabinoid receptor stimulation of guanosine-5'-O-(3-[35S]thio)triphosphate binding in rat brain membranes.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Cannabinoid receptors belong to the class of G-protein-coupled receptors which inhibit adenylyl cyclase. Coupling of receptors to G-proteins can be assessed by the ability of agonists to stimulate guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTP gamma S) binding in the presence of excess GDP. The
The endogenous cannabinoid anandamide has been reported to produce well-defined behavioral tolerance, but studies on the possible mechanisms underlying this process are few and often contradictory. The present study was designed to survey the cellular events involved in anandamide tolerance, in
The omega-3 fatty acid ethanolamides, docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA), displayed greater anti-proliferative potency than their parent omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in LNCaP and PC3 prostate cancer cells.
Cannabinoid receptors are members of the superfamily of G protein-coupled receptors. Their activation has previously been shown to stimulate guanosine 5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding in a range of brain regions using both membrane preparations and autoradiography. This

Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Cannabinoids-endocannaboids are possible preventatives of common diseases including cancers. Cannabinoid receptors (CB(½), TRPV1) are central components of the system. Many disease-ameliorating effects of cannabinoids-endocannabinoids are receptor mediated, but many are not, indicating non-CBR
The endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG) bind to G protein-coupled central and peripheral cannabinoid receptors CB1 and CB2, respectively. Due to the relatively high expression of the CB2 isotype on peripheral immune cells, it has been hypothesized that this receptor
Chronic treatment of rats with delta9-tetrahydrocannabinol (delta9-THC) results in tolerance to its acute behavioral effects. In a previous study, 21-day delta9-THC treatment in rats decreased cannabinoid activation of G proteins in brain, as measured by in vitro autoradiography of
Chronic treatment with Delta(9)-tetrahydrocannabinol (THC) produces tolerance to cannabinoid-mediated behaviors and region-specific adaptation of brain cannabinoid receptors. However, the relationship between receptor adaptation and tolerance is not well understood, and the dose-response
Binge drinking is a significant problem in adolescent populations, and because of the reciprocal interactions between ethanol (EtOH) consumption and the endocannabinoid (eCB) system, we sought to determine if adolescent EtOH intake altered the localization and function of the cannabinoid 1
Chronic exposure to CP55,940 produced a significant down-regulation of cannabinoid receptors in the striatum, cortex, hippocampus, and cerebellum of rat brain. At 24 h after SR141716-precipitated withdrawal, we observed a tendency to return to basal levels in the striatum and cortex, whereas the

The effects of delta9-tetrahydrocannabinol physical dependence on brain cannabinoid receptors.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The effects of chronic Delta(9)-tetrahydrocannabinol on cannabinoid receptor levels and receptor-G-protein coupling were investigated. Male Sprague-Dawley rats were infused continuously with low or high dose regimens of Delta(9)-tetrahydrocannabinol or vehicle for 4 days. Following treatment, rats

Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Long-term cannabinoid administration produces region-dependent CB1 receptor desensitization and down-regulation. This study examined the time course for normalization of CB1 receptors and G-protein activation using 3H-labeled
OBJECTIVE An 18-year-old man with Arnold-Chiari malformation (ACM) type I developed sudden panic attacks. He also manifested sleep disorder, cannabis abuse, and psychosis-risk syndrome (PRS). Although with average-superior intelligence, he had executive dysfunction. This prompted us to explore the

Independence of, and interactions between, cannabinoid and opioid signal transduction pathways in N18TG2 cells.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
N18TG2 neuroblastoma cells co-express delta-opioid and CB1-cannabinoid receptors. Both receptors are negatively coupled to adenylyl cyclase through pertussis toxin-sensitive GTP-binding proteins. In the present study, we confirmed the independent activity of opioid and cannabinoid agonists, and

Cannabinoid receptor agonist-stimulated [35S]guanosine triphosphate gammaS binding in the brain of C57BL/6 and DBA/2 mice.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The two inbred strains of mice C57BL/6 (alcohol-preferring) and DBA/2 (alcohol-avoiding) mice have been shown to differ significantly in their preference for alcohol (EtOH). We have previously demonstrated the differences in the density and the affinity of cannabinoid (CB1) receptors in the brains
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge