Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

p coumaric acid 2/arabidopsis

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
Halaman 1 dari 31 hasil
p-Coumaric acid is a commercially available phenolcarboxylic acid with a great number of important applications in the nutraceutical, pharmaceutical, material and chemical industries. p-Coumaric acid has been biosynthesized in some engineered microbes, but the potential of the plant

Detection of Incorporation of p-Coumaric Acid into Photoactive Yellow Protein Variants in Vivo.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
We report the design and characterization of photoactive yellow protein (PYP)-blue fluorescent protein (mTagBFP) fusion constructs that permit the direct assay of reconstitution and function of the PYP domain. These constructs allow for in vivo testing of co-expression systems for enzymatic
Some flavonoids are considered as beneficial compounds because they exhibit anticancer or antioxidant activity. In higher plants, flavonoids are secondary metabolites that are derived from phenylpropanoid biosynthetic pathway. A large number of phenylpropanoids are generated from p-coumaric acid,
Resveratrol is a well-known polyphenol present in red wine and exerts antioxidative and anti-carcinogenic effects on the human body. To produce resveratrol in a food-grade yeast, the 4-coumarate:coenzyme A ligase gene (4CL1) from Arabidopsis thaliana and stilbene synthase gene (STS) from Arachis

Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Arabidopsis thaliana Heynh. harbors UDP-glucose-dependent glucosyltransferase (UGT; EC 2.4.1.-) activities that are able to glucosylate xenobiotic substrates as a crucial step in their detoxification, similar to other plants. However, it has remained elusive whether side-activities of UGTs acting on

Functional Characterization of Cinnamate 4-hydroxylase from Helianthus annuus Linn Using a Fusion Protein Method

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Sunflower (Helianthus annuus L.) is an important oil crop, the secondary metabolites of it include many compounds such as flavonoids and lignin. However, the research on the biosynthesis of phenolic compounds in sunflowers is still scarce. Cinnamate 4-hydroxylase (C4H) belongs to the cytochrome
Curcuminoids are phenylpropanoids with high pharmaceutical potential. Herein, we report an engineered artificial pathway in Escherichia coli to produce natural curcuminoids through caffeic acid. Arabidopsis thaliana 4-coumaroyl-CoA ligase and Curcuma longa diketide-CoA synthase (DCS) and curcumin

Synthesis of rosmarinic acid analogues in Escherichia coli.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
OBJECTIVE To produce rosmarinic acid analogues in the recombinant Escherichia coli BLRA1, harboring a 4-coumarate: CoA ligase from Arabidopsis thaliana (At4CL) and a rosmarinic acid synthase from Coleus blumei (CbRAS). RESULTS Incubation of the recombinant E. coli strain BLRA1 with exogenously

De Novo Biosynthesis of Caffeic Acid from Glucose by Engineered Saccharomyces cerevisiae.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Caffeic acid is a plant phenolic compound possessing extensive pharmacological activities. Here, we identified that p-coumaric acid 3-hydroxylase from Arabidopsis thaliana was capable of hydroxylating p-coumaric acid to form caffeic acid in Saccharomyces cerevisiae. Then, we introduced a combined

Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell

Metabolic profiling of root exudates of Arabidopsis thaliana.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
In addition to accumulating biologically active chemicals, plant roots continuously produce and secrete compounds into their immediate rhizosphere. However, the mechanisms that drive and regulate root secretion of secondary metabolites are not fully understood. To enlighten two neglected areas of

Construction of synthetic pathways for raspberry ketone production in engineered Escherichia coli.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Raspberry ketone is an important ingredient in the flavor and fragrance industries. Due to its low content in fruits and vegetables, the production of natural raspberry ketone using heterologous synthesis in microbial strains is recently attracting increased attention. In this work, a heterologous
A bioassay-directed phytochemical study was conducted to investigate potential allelochemicals in the roots of the invasive plant Ageratina adenophora. Eleven phenolic compounds, including seven new ones, 7-hydroxy-8,9-dehydrothymol 9-O-trans-ferulate (1), 7-hydroxythymol 9-O-trans-ferulate (2),

Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Resveratrol is a naturally occurring defense compound produced by a limited number of plants in response to stresses. Besides cardiovascular benefits, this health-promoting compound has been reported to extend life spans in yeasts, flies, worms, and fish. To biosynthesize resveratrol de novo,

CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The 4- and 5-hydroxylations of phenolic compounds in plants are catalyzed by cytochrome P450 enzymes. The 3-hydroxylation step leading to the formation of caffeic acid from p-coumaric acid remained elusive, however, alternatively described as a phenol oxidase, a dioxygenase, or a P450 enzyme, with
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge