Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

putrescine/stroke

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
Halaman 1 dari 20 hasil

Excessive Astrocytic GABA Causes Cortical Hypometabolism and Impedes Functional Recovery after Subcortical Stroke

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Glucose hypometabolism in cortical structures after functional disconnection is frequently reported in patients with white matter diseases such as subcortical stroke. However, the molecular and cellular mechanisms have been poorly elucidated. Here we show, in an animal model of internal capsular
We investigated changes in PA levels by the treatment of human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) in ischemic stroke in rat brain model and in cultured neuronal SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD). In ischemic rat model, transient middle cerebral artery

Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid beta (Aβ) proteins within the walls of the cerebral vasculature with subsequent aggressive vascular inflammation leading to recurrent hemorrhagic strokes. The objective of the study was to develop theranostic

The role of polyamine metabolism in neuronal injury following cerebral ischemia.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Stroke is a leading cause of morbidity and mortality in the US, with secondary damage following the initial insult contributing significantly to overall poor outcome. Prior investigations have shown that the metabolism of certain polyamines such as spermine, spermidine, and putrescine are elevated

Evidence for nuclear ornithine decarboxylase activity in different brain regions of the male rat.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The subcellular distribution of ornithine decarboxylating activity in nucleus caudatus putamen, hippocampus, parietal cerebral cortex, cerebellum and hypothalamus of male rat brain has been investigated. The 7000 g supernatant (cytosolic fraction), the 7000 g sediment and the 700 g sediment (nuclear
OBJECTIVE Cerebral ischemia causes activation of ornithine decarboxylase (ODC) gene and subsequent accumulation of putrescine, which might either directly or indirectly affect the outcome of cerebral infarct. We developed a transgenic rat overexpressing human ODC, which was used to explore the

Spermine is neuroprotective against anoxia and N-methyl-D-aspartate in hippocampal slices.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Polyamines were implicated as either neurotoxic or neuroprotective in several models of stroke. Spermine augments the excitotoxicity mediated by the N-methyl-D-aspartate (NMDA) receptor because this receptor is activated at micromolar spermine concentrations. However, at higher concentrations,
It has been widely recognized that glutamate (Glu)-induced cytotoxicity, intracellular calcium overload and excessive free radical production are the key players in the development and progression of ischemic brain injury. Since MK-801, an antagonist of N-methyl-d-aspartate (NMDA) receptor, showed

Polyamines in the brain: distribution, biological interactions, and their potential therapeutic role in brain ischaemia.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The endogenous polyamines (spermine, spermidine, and putrescine) are present at relatively high concentrations in the mammalian brain and play crucial roles in a variety of aspects of cell functioning. Stroke is the third most common cause of death and the leading cause of disability among adults in

Neuronal and glial responses to polyamines in the ischemic brain.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The polyamines, putrescine, spermidine and spermine are present in most living cells, with the essentiality for normal cell function, cellular growth and differentiation. In the mammalian brain, polyamines are also present at relatively high concentrations with different regional distribution

[Physiological functions of polyamines and regulation of polyamine content in cells].

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Polyamines (putrescine, spermidine, and spermine) are essential for normal cell growth. The polyamine level in cells is regulated by biosynthesis, degradation, and transport. The role of antizyme on polyamine biosynthesis and transport in mammalian cells and characteristics of polyamine transport in
Reactive oxygen species (ROS) play a vital role in brain damage after cerebral ischemia-reperfusion injury, and ROS scavengers have been shown to exert neuroprotective effects against ischemic brain injury. We have recently identified

Difluoromethylornithine decreases postischemic brain edema and blood-brain barrier breakdown.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Brain polyamines have been associated with posttraumatic vasogenic edema and blood-brain barrier (BBB) breakdown seen in some models of brain injury. We hypothesized that the inhibition of the enzyme responsible for polyamine production with the decarboxylase difluoromethylornithine (DFMO) may
Focal cerebral ischaemia was induced in rats by occlusion of the left middle cerebral artery. Two days later, infarct volume was determined by magnetic resonance imaging and the concentrations of the polyamines putrescine (PU), spermine and spermidine by HPLC. In control (occluded) animals, PU

Transgenic animals as models in the study of the neurobiological role of polyamines.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Natural polyamines, putrescine, spermidine and spermine, exhibit a number of neurophysiological and metabolic effects in brain preparations. In the in vitro studies, several specific sites of action have been identified such as ion channels, transmitter release and Ca2+ homeostasis. Polyamines have
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge