Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

serotonin/padi

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
14 hasil

Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa).

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The penultimate enzyme in melatonin synthesis is serotonin N-acetyltransferase (SNAT), which exists as a single copy in mammals and plants. Our recent studies of the Arabidopsis snat-knockout mutant and SNAT RNAi rice (Oryza sativa) plants predicted the presence of at least one other SNAT isogene in
Rice tryptamine 5-hydroxylase (T5H) is the second enzyme in melatonin biosynthesis, catalyzing tryptamine into serotonin. Transgenic rice plants, in which the expression of endogenous T5H was either overexpressed or repressed, were examined for alteration in melatonin biosynthesis. Unexpectedly, the
Serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT) are the last two key enzymes for melatonin biosynthesis in living organisms. In this study, we demonstrated that transgenic rice (Oryza sativa L.) plants, in which expression of either endogenous SNAT or ASMT was

Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Plant tryptophan decarboxylase (TDC) is a type II Pyridoxal-5'-phosphate-dependent decarboxylase (PLP_DC) that could be used as a target to genetically improve crops. However, lack of accurate structural information on plant TDC hampers the understanding of its decarboxylation mechanisms. In the
While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization
A GC-MS based analytical approach was undertaken to understand the metabolomic responses of seedlings of 2 salt sensitive (Sujala and MTU 7029) and 2 tolerant varieties (Bhutnath, and Nonabokra) of indica rice (Oryza sativa L.) to NaCl induced stress. The 4 varieties responded differently to NaCl

A Connection between Lysine and Serotonin Metabolism in Rice Endosperm.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Cereal endosperms produce a vast array of metabolites, including the essential amino acid lysine (Lys). Enhanced accumulation of Lys has been achieved via metabolic engineering in cereals, but the potential connection between metabolic engineering and Lys fortification is unclear. In mature seeds of

Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Serotonin, which is well known as a pineal hormone in mammals, plays a key role in conditions such as mood, eating disorders, and alcoholism. In plants, although serotonin has been suggested to be involved in several physiological roles, including flowering, morphogenesis, and adaptation to
L-Tryptophan decarboxylase (TDC) and L-tyrosine decarboxylase (TYDC) belong to a family of aromatic L-amino acid decarboxylases and catalyze the conversion of tryptophan and tyrosine into tryptamine and tyramine, respectively. The rice genome has been shown to contain seven TDC or TYDC-like genes.

Methanol elicits the biosynthesis of 4-coumaroylserotonin and feruloylserotonin in rice seedlings.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Rice (Oryza sativa cv. Dongjin) plants responded to treatment with methanol by inducing the synthesis of secondary metabolites such as serotonin derivatives which include feruloylserotonin and 4-coumaroylserotonin. This response was not only a dose dependence on methanol showing a maximum effect

Rice P450 reductases differentially affect P450-mediated metabolism in bacterial expression systems.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
We describe cloning and characterization of three rice (Oryza sativa) NADPH-cytochrome P450 reductases (OsCPRs; E.C.1.6.2.4) that are potential donors to plant P450s, including tryptamine 5-hydroxylase (T5H) in serotonin synthesis and cinnamate 4-hydroxylase (C4H) in phenylpropanoid synthesis. All
Transgenic rice (Oryza sativa) plants were engineered to express a N-(hydroxycinnamoyl)transferase from pepper (Capsicum annuum), which has been shown to have hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase activity, a key enzyme in the synthesis of hydroxycinnamic acid amides, under

Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
The effect of light on melatonin biosynthesis was examined in detached rice (Oryza sativa cv. Asahi) leaves during the senescence process. The detached leaves were exposed to senescence treatment either in constant darkness or in constant light, and subjected to HPLC analysis for melatonin and its
No previous reports have described the effects of an increase in endogenous melatonin levels on plant yield and reproduction. Here, the phenotypes of melatonin-rich transgenic rice plants overexpressing sheep serotonin N-acetyltransferase were investigated under field conditions. Early seedling
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge