Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Rapid Communications in Mass Spectrometry 2019-Aug

17 O-excess as a detector for co-extracted organics in vapor analyses of plant isotope signatures.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Magali Nehemy
Cody Millar
Kim Janzen
Marcel Gaj
Dyan Pratt
Colin Laroque
Jeffrey McDonnell

Lykilorð

Útdráttur

RATIONALE
The stable isotope compositions of hydrogen and oxygen in water (δ2 H and δ18 O values) have been widely used to investigate plant water sources, but traditional isotopic measurements of plant waters are expensive and labor intensive. Recent work with direct vapor equilibration (DVE) on laser spectroscopy has shown potential to side step limitations imposed by traditional methods. Here, we evaluate DVE analysis of plants with a focus on spectral contamination introduced by organic compounds. We present 17 O-excess as a way of quantifying organic compound interference in DVE.

METHODS
We performed isotopic analysis using the δ2 H, δ18 O and δ17 O values of water on an Off-Axis Integrated Cavity Output Spectroscopy (IWA-45EP OA-ICOS) instrument in vapor mode. We used a set of methanol (MeOH) and ethanol (EtOH) solutions to assess errors in isotope measurements. We evaluated how organic compounds affect the 17 O-excess. DVE was used to measure the isotopic signatures in natural plant material from Pinus banksiana, Picea mariana, and Larix laricina, and soil from boreal forest for comparison with solutions.

RESULTS
The 17 O-excess was sensitive to the presence of organic compounds in water. 17 O-excess changed proportionally to the concentration of MeOH per volume of water, resulting in positive values, while EtOH solutions resulted in smaller changes in the 17 O-excess. Soil samples did not show any spectral contamination. Plant samples were spectrally contaminated on the narrow-band and were enriched in 1 H and 16 O compared with source water. L. laricina was the only species that did not show any evidence of spectral contamination. Xylem samples that were spectrally contaminated had positive 17 O-excess values.

CONCLUSIONS
17 O-excess can be a useful tool to identify spectral contamination and improve DVE plant and soil analysis in the laboratory and in situ. The 17 O-excess flagged the presence of MeOH and EtOH. Adding measurement of δ17 O values to traditional measurement of δ2 H and δ18 O values may shed new light on plant water analysis for source mixing dynamics using DVE.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge