Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 2004-Oct

Avenues of extrapulmonary oxygen uptake in western painted turtles (Chrysemys picta belli) at 10 degrees C.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Donald C Jackson
Elizabeth M Rauer
Rachel A Feldman
Scott A Reese

Lykilorð

Útdráttur

The major avenues of extrapulmonary oxygen uptake were determined on submerged western painted turtles (Chrysemys picta bellii) at 10 degrees C by selectively blocking one or more potential pathways for exchange. Previous work indicated that the skin, the cloaca, and the buccopharyngeal cavity can all contribute significantly in various species of turtles. O(2) uptake was calculated from the rate of fall in water P(O(2)) in a closed chamber. Two series of experiments were conducted: in Series 1, each of the potential avenues was mechanically blocked either singly or in combination; in Series 2, active cloacal and buccal pumping were prevented pharmacologically using the paralytic agent rocuronium. In addition in Series 2, N(2)-breathing preceded submergence in some animals and in one set of Series 2 experiments arterial blood was sampled and analyzed for pH, lactate, P(O(2)), and P(CO(2)). Results in both Series 1 and Series 2 revealed that prevention of cloacal and/or buccopharyngeal exchange did not significantly affect total O(2) uptake. Interfering with skin diffusion in Series 1, however, significantly reduced O(2) uptake by 50%. N(2)-breathing prior to submergence in Series 2 did not affect O(2) uptake in paralyzed turtles but significantly increased uptake in unparalyzed turtles without catheters. Blood analysis revealed that all submerged turtles developed lactic acidosis, but the rate of rise in lactate was significantly lower in paralyzed animals. We conclude that passive diffusion through the integument is the principal avenue of aquatic O(2) uptake in this species.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge