Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2017-Sep

Cr-induced cellular injury and necrosis in Glycine max L.: Biochemical mechanism of oxidative damage in chloroplast.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Kalimuthu Balasaraswathi
Sivalingam Jayaveni
Janardhanam Sridevi
Dhanasingh Sujatha
Kavati Phebe Aaron
Chellan Rose

Lykilorð

Útdráttur

Chromium-induced toxicity and mechanisms of cell death involved in plants are yet to be fully elucidated. To understand the events of these processes, the stress response of the soybean plant using trivalent and hexavalent chromium compounds, namely, basic chromium sulphate (BCS) and potassium dichromate (K2Cr2O7) was investigated. The leaf surface morphology for stomatal aperture, wax deposition and presence of trichomes for chromium accumulation was examined by SEM-EDAX and light microscopy. The leaf mesophyll cell integrity was identified by trypan blue staining; chlorophyll autofluorescence, ROS generation and mitochondrial function were studied by fluorescence microscopy using different dyes. Isolated chloroplasts were analysed for micronutrients and total chromium content by AAS. Elevated Cr level and decreased Fe, Cu and Zn content in chloroplast revealed the active transportation of highly soluble Cr6+ species resulting in poor absorption of micronutrients. Cr accumulation as Cr(V) in chloroplast was noticed at g = 1.98 of electron paramagnetic resonance signal. Plants grown in Cr(VI) amended soil showed chemical modification of biological macromolecules in the chloroplast as observed from fourier transform infra-red (FTIR) spectra; the chloroplast DNA damage was confirmed by DAPI staining. Cr(VI)-treated plants showed significant reduction in the levels of various biochemical parameters. The results altogether clearly indicate that Cr(VI)-induced reactive oxygen species (ROS) production leads to oxidative stress-associated changes in the organelles, particularly in chloroplast, resulting in cell death.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge