Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1999-Jul

Decreased cell wall digestibility in canola transformed with chimeric tyrosine decarboxylase genes from opium poppy

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Facchini
Yu
Penzes-Yost

Lykilorð

Útdráttur

Tyrosine decarboxylase (TYDC) is a common plant enzyme involved in the biosynthesis of numerous secondary metabolites, including hydroxycinnamic acid amides. Although a definite function has not yet been determined, amides have been proposed to form a physical barrier against pathogens because they are usually found as integral cell wall components. Canola (Brassica napus) was independently transformed with chimeric genes (35S::TYDC1 and 35S::TYDC2) under the transcriptional control of the cauliflower mosaic virus 35S promoter, and encoding two TYDC isoforms from opium poppy (Papaver somniferum). All T0 plants displayed a suppressed level of wild-type TYDC activity, and transgene mRNAs were not detected. Silencing of 35S::TYDC1 was overcome in the T1 progeny of self-pollinated T0 plants, since high levels of TYDC1 mRNAs were detected, and TYDC activity increased up to 4-fold compared with wild-type levels. However, TYDC1 mRNA levels decreased in T2 plants and were not detected in the T3 progeny. TYDC activity also gradually declined in T2 and T3 plants to nearly wild-type levels. In contrast, silencing of 35S::TYDC2 was maintained through four consecutive generations. T1 plants with a 3- to 4-fold increase in wild-type TYDC activity showed a 30% decrease in cellular tyrosine pools and a 2-fold increase in cell wall-bound tyramine compared with wild-type plants. An increase in cell wall-bound aromatic compounds was also detected in these T1 plants by ultraviolet autofluorescence microscopy. The relative digestibility of cell walls measured by protoplast release efficiency was inversely related to the level of TYDC activity.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge