Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physical review. E, Statistical, nonlinear, and soft matter physics 2005-Jan

Dynamics of water in strawberry and red onion as studied by dielectric spectroscopy.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
H Jansson
C Huldt
R Bergman
J Swenson

Lykilorð

Útdráttur

We have investigated the microscopic dynamics of strawberry and red onion by means of broadband dielectric spectroscopy. In contrast to most of the previous experiments on carbohydrate-rich biological materials, which have mainly considered the more global dynamics of the "biological matrix," we are here focusing on the microscopic dynamics of mainly the associated water. The results for both strawberry and red onion show that the imaginary part of the permittivity contains one conductivity term and a clear dielectric loss peak, which was found to be similar to the strongest relaxation process of water in carbohydrate solutions. The temperature dependence of the relaxation process was analyzed for different water content. The relaxation process slows down, and its temperature dependence becomes more non-Arrhenius, with decreasing water content. The reason for this is most likely that, on average, the water molecules interact more strongly with carbohydrates and other biological materials at low water content, and the dynamical properties of this biological matrix changes substantially with increasing temperature (from an almost rigid matrix where the water is basically unable to perform long-range diffusion due to confinement effects, to a dynamic matrix with no static confinement effects), which also changes (i.e., reduces) the activation energy of the relaxation process with increasing temperature (i.e., causes a non-Arrhenius temperature dependence). This further changes the conductivity from mainly polarization effects at low temperatures, due to hindered ionic motions, to long-range diffusivity at T>250 K . Thus, around this temperature ions in the carbohydrate solution no longer get stuck in confined cavities, since the motion of the biological matrix "opens up" the cavities and the ions are then able to perform long-range migration.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge