Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2011-May

Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Christa Lang
Andrea Polle

Lykilorð

Útdráttur

Knowledge is limited about whether root nutrient concentrations are affected by mixtures of tree species and interspecific root competition. The goal of this field study was to investigate root nutrient element concentrations in relation to root and ectomycorrhizal (EM) diversity in six different mixtures of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia sp.) in an old-growth, undisturbed forest ecosystem. Root biomass and nutrient concentrations per tree taxon as well as the abundance and identity of all EM fungi were determined in soil cores of a volume of 1 L (r=40 mm, depth=200 mm). Stand-level nutrient concentrations in overall root biomass and H' (Shannon-Wiener diversity) were obtained by pooling the data per stand. At stand level, Shannon H' for roots and aboveground tree species abundance were correlated. H' for roots and EM fungi were not correlated because of the contribution of ash roots that form only arbuscular mycorrhizal but no EM associations. Nutrient element concentrations in roots showed taxon-related differences and increased in the following order: beech ≤ lime < ash with the exception of calcium (Ca), which was lower in ash. Stand-level concentrations of Ca, magnesium, potassium and sulfur in roots increased with increasing tree diversity because of two effects: increasing contribution of ash roots to the mixture and increasing Ca accumulation in beech roots with increasing root diversity. On a small scale, increasing root diversity, but not EM diversity, was correlated with decreasing P concentrations in beech roots pointing to interspecific tree competition. Nitrogen (N) concentrations of beech roots were unaltered in relation to root and EM diversity. Opposing behavior was observed for lime and ash: the N concentrations in lime roots increased, whereas those in ash roots decreased with increasing EM diversity in a given soil volume. This suggests that EM diversity facilitates N acquisition of lime roots at the expense of non-EM ash.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge