Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Critical Care Medicine 1996-Jun

Effect of hypoxia on lung, heart, and liver insulin-like growth factor-I gene and receptor expression in the newborn rat.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
D Y Moromisato
M Y Moromisato
S Zanconato
C T Roberts

Lykilorð

Útdráttur

OBJECTIVE

We examined the effect of 7 days of hypoxia in the newborn rat on: a) body, heart, and lung growth; b) circulating insulin-like growth factor-I (IGF-I); c) lung, heart, and liver IGF-I gene expression; and d) lung IGF-I type 1 receptor gene expression and IGF-I receptor binding. We hypothesize that hypoxic exposure would modify body and organ growth and alter IGF-I gene and receptor expression in an organ specific manner.

METHODS

Randomized, controlled prospective study.

METHODS

University research laboratory.

METHODS

Eleven newborn rat litters (n = 10 per litter) comprised the hypoxia-exposed group and 11 litters comprised the control group (room air).

METHODS

Hypoxia-group rats were placed in a chamber with an FIO2 of 0.12 on postnatal day 1. Control group rats breathed room air. Exposure to hypoxia continued for 7 days.

RESULTS

Hepatic, lung, and cardiac IGF-I mRNA levels and lung IGF-I type 1 receptor mRNA were analyzed, using the ribonuclease protection assay. Crude membrane extracts were used for competitive binding studies with IGF-I and insulin. Somatic growth in the hypoxic group was reduced by 22% (final weight: hypoxic, 14.8 +/- 1.2 g; control, 17.1 +/- 1.5 g; p < .001). The relative weight (organ weight/body weight [mg/g]) of the heart was increased by 39% (p < .001) in the hypoxic pups compared with the normoxic animals, while the relative weight of the lung was unchanged. With hypoxia, IFG-I mRNA concentrations were significantly increased both in the heart and lung (30% and 33%, respectively, p < .02); but, in contrast, IGF-I mRNA concentrations were not significantly different in the liver. The IGF-I receptor mRNA in the lung was increased by 200% (p < .02) in hypoxia compared with controls. There was no effect of hypoxia on specific or nonspecific binding of IGF-I or insulin in the lung tissue. However, specific binding was 33% greater in the IGF-I compared with the insulin experiments.

CONCLUSIONS

a) Hypoxia increased IGF-I mRNA in the heart, and increased both IGF-I mRNA and IGF-I type 1 receptor mRNA in the lung. b) The effects of hypoxia on IFG-I are tissue-specific.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge